This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for domtriom . This is the equinumerosity version of the algebraic identity sum_ k e. n ( 2 ^ k ) = ( 2 ^ n ) - 1 . (Contributed by Mario Carneiro, 7-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwsdompw | |- ( ( n e. _om /\ A. k e. suc n ( B ` k ) ~~ ~P k ) -> U_ k e. n ( B ` k ) ~< ( B ` n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq | |- ( n = (/) -> suc n = suc (/) ) |
|
| 2 | 1 | raleqdv | |- ( n = (/) -> ( A. k e. suc n ( B ` k ) ~~ ~P k <-> A. k e. suc (/) ( B ` k ) ~~ ~P k ) ) |
| 3 | iuneq1 | |- ( n = (/) -> U_ k e. n ( B ` k ) = U_ k e. (/) ( B ` k ) ) |
|
| 4 | fveq2 | |- ( n = (/) -> ( B ` n ) = ( B ` (/) ) ) |
|
| 5 | 3 4 | breq12d | |- ( n = (/) -> ( U_ k e. n ( B ` k ) ~< ( B ` n ) <-> U_ k e. (/) ( B ` k ) ~< ( B ` (/) ) ) ) |
| 6 | 2 5 | imbi12d | |- ( n = (/) -> ( ( A. k e. suc n ( B ` k ) ~~ ~P k -> U_ k e. n ( B ` k ) ~< ( B ` n ) ) <-> ( A. k e. suc (/) ( B ` k ) ~~ ~P k -> U_ k e. (/) ( B ` k ) ~< ( B ` (/) ) ) ) ) |
| 7 | suceq | |- ( n = m -> suc n = suc m ) |
|
| 8 | 7 | raleqdv | |- ( n = m -> ( A. k e. suc n ( B ` k ) ~~ ~P k <-> A. k e. suc m ( B ` k ) ~~ ~P k ) ) |
| 9 | iuneq1 | |- ( n = m -> U_ k e. n ( B ` k ) = U_ k e. m ( B ` k ) ) |
|
| 10 | fveq2 | |- ( n = m -> ( B ` n ) = ( B ` m ) ) |
|
| 11 | 9 10 | breq12d | |- ( n = m -> ( U_ k e. n ( B ` k ) ~< ( B ` n ) <-> U_ k e. m ( B ` k ) ~< ( B ` m ) ) ) |
| 12 | 8 11 | imbi12d | |- ( n = m -> ( ( A. k e. suc n ( B ` k ) ~~ ~P k -> U_ k e. n ( B ` k ) ~< ( B ` n ) ) <-> ( A. k e. suc m ( B ` k ) ~~ ~P k -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) ) ) |
| 13 | suceq | |- ( n = suc m -> suc n = suc suc m ) |
|
| 14 | 13 | raleqdv | |- ( n = suc m -> ( A. k e. suc n ( B ` k ) ~~ ~P k <-> A. k e. suc suc m ( B ` k ) ~~ ~P k ) ) |
| 15 | iuneq1 | |- ( n = suc m -> U_ k e. n ( B ` k ) = U_ k e. suc m ( B ` k ) ) |
|
| 16 | fveq2 | |- ( n = suc m -> ( B ` n ) = ( B ` suc m ) ) |
|
| 17 | 15 16 | breq12d | |- ( n = suc m -> ( U_ k e. n ( B ` k ) ~< ( B ` n ) <-> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) ) |
| 18 | 14 17 | imbi12d | |- ( n = suc m -> ( ( A. k e. suc n ( B ` k ) ~~ ~P k -> U_ k e. n ( B ` k ) ~< ( B ` n ) ) <-> ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) ) ) |
| 19 | 0iun | |- U_ k e. (/) ( B ` k ) = (/) |
|
| 20 | 0ex | |- (/) e. _V |
|
| 21 | 20 | sucid | |- (/) e. suc (/) |
| 22 | fveq2 | |- ( k = (/) -> ( B ` k ) = ( B ` (/) ) ) |
|
| 23 | pweq | |- ( k = (/) -> ~P k = ~P (/) ) |
|
| 24 | 22 23 | breq12d | |- ( k = (/) -> ( ( B ` k ) ~~ ~P k <-> ( B ` (/) ) ~~ ~P (/) ) ) |
| 25 | 24 | rspcv | |- ( (/) e. suc (/) -> ( A. k e. suc (/) ( B ` k ) ~~ ~P k -> ( B ` (/) ) ~~ ~P (/) ) ) |
| 26 | 21 25 | ax-mp | |- ( A. k e. suc (/) ( B ` k ) ~~ ~P k -> ( B ` (/) ) ~~ ~P (/) ) |
| 27 | 20 | canth2 | |- (/) ~< ~P (/) |
| 28 | ensym | |- ( ( B ` (/) ) ~~ ~P (/) -> ~P (/) ~~ ( B ` (/) ) ) |
|
| 29 | sdomentr | |- ( ( (/) ~< ~P (/) /\ ~P (/) ~~ ( B ` (/) ) ) -> (/) ~< ( B ` (/) ) ) |
|
| 30 | 27 28 29 | sylancr | |- ( ( B ` (/) ) ~~ ~P (/) -> (/) ~< ( B ` (/) ) ) |
| 31 | 26 30 | syl | |- ( A. k e. suc (/) ( B ` k ) ~~ ~P k -> (/) ~< ( B ` (/) ) ) |
| 32 | 19 31 | eqbrtrid | |- ( A. k e. suc (/) ( B ` k ) ~~ ~P k -> U_ k e. (/) ( B ` k ) ~< ( B ` (/) ) ) |
| 33 | sssucid | |- suc m C_ suc suc m |
|
| 34 | ssralv | |- ( suc m C_ suc suc m -> ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> A. k e. suc m ( B ` k ) ~~ ~P k ) ) |
|
| 35 | 33 34 | ax-mp | |- ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> A. k e. suc m ( B ` k ) ~~ ~P k ) |
| 36 | pm2.27 | |- ( A. k e. suc m ( B ` k ) ~~ ~P k -> ( ( A. k e. suc m ( B ` k ) ~~ ~P k -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) ) |
|
| 37 | 35 36 | syl | |- ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ( ( A. k e. suc m ( B ` k ) ~~ ~P k -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) ) |
| 38 | 37 | adantl | |- ( ( m e. _om /\ A. k e. suc suc m ( B ` k ) ~~ ~P k ) -> ( ( A. k e. suc m ( B ` k ) ~~ ~P k -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) ) |
| 39 | vex | |- m e. _V |
|
| 40 | 39 | sucid | |- m e. suc m |
| 41 | elelsuc | |- ( m e. suc m -> m e. suc suc m ) |
|
| 42 | fveq2 | |- ( k = m -> ( B ` k ) = ( B ` m ) ) |
|
| 43 | pweq | |- ( k = m -> ~P k = ~P m ) |
|
| 44 | 42 43 | breq12d | |- ( k = m -> ( ( B ` k ) ~~ ~P k <-> ( B ` m ) ~~ ~P m ) ) |
| 45 | 44 | rspcv | |- ( m e. suc suc m -> ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ( B ` m ) ~~ ~P m ) ) |
| 46 | 40 41 45 | mp2b | |- ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ( B ` m ) ~~ ~P m ) |
| 47 | djuen | |- ( ( ( B ` m ) ~~ ~P m /\ ( B ` m ) ~~ ~P m ) -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ( ~P m |_| ~P m ) ) |
|
| 48 | 46 46 47 | syl2anc | |- ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ( ~P m |_| ~P m ) ) |
| 49 | pwdju1 | |- ( m e. _om -> ( ~P m |_| ~P m ) ~~ ~P ( m |_| 1o ) ) |
|
| 50 | nnord | |- ( m e. _om -> Ord m ) |
|
| 51 | ordirr | |- ( Ord m -> -. m e. m ) |
|
| 52 | 50 51 | syl | |- ( m e. _om -> -. m e. m ) |
| 53 | dju1en | |- ( ( m e. _om /\ -. m e. m ) -> ( m |_| 1o ) ~~ suc m ) |
|
| 54 | 52 53 | mpdan | |- ( m e. _om -> ( m |_| 1o ) ~~ suc m ) |
| 55 | pwen | |- ( ( m |_| 1o ) ~~ suc m -> ~P ( m |_| 1o ) ~~ ~P suc m ) |
|
| 56 | 54 55 | syl | |- ( m e. _om -> ~P ( m |_| 1o ) ~~ ~P suc m ) |
| 57 | entr | |- ( ( ( ~P m |_| ~P m ) ~~ ~P ( m |_| 1o ) /\ ~P ( m |_| 1o ) ~~ ~P suc m ) -> ( ~P m |_| ~P m ) ~~ ~P suc m ) |
|
| 58 | 49 56 57 | syl2anc | |- ( m e. _om -> ( ~P m |_| ~P m ) ~~ ~P suc m ) |
| 59 | entr | |- ( ( ( ( B ` m ) |_| ( B ` m ) ) ~~ ( ~P m |_| ~P m ) /\ ( ~P m |_| ~P m ) ~~ ~P suc m ) -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ~P suc m ) |
|
| 60 | 48 58 59 | syl2an | |- ( ( A. k e. suc suc m ( B ` k ) ~~ ~P k /\ m e. _om ) -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ~P suc m ) |
| 61 | 39 | sucex | |- suc m e. _V |
| 62 | 61 | sucid | |- suc m e. suc suc m |
| 63 | fveq2 | |- ( k = suc m -> ( B ` k ) = ( B ` suc m ) ) |
|
| 64 | pweq | |- ( k = suc m -> ~P k = ~P suc m ) |
|
| 65 | 63 64 | breq12d | |- ( k = suc m -> ( ( B ` k ) ~~ ~P k <-> ( B ` suc m ) ~~ ~P suc m ) ) |
| 66 | 65 | rspcv | |- ( suc m e. suc suc m -> ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ( B ` suc m ) ~~ ~P suc m ) ) |
| 67 | 62 66 | ax-mp | |- ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ( B ` suc m ) ~~ ~P suc m ) |
| 68 | 67 | ensymd | |- ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ~P suc m ~~ ( B ` suc m ) ) |
| 69 | 68 | adantr | |- ( ( A. k e. suc suc m ( B ` k ) ~~ ~P k /\ m e. _om ) -> ~P suc m ~~ ( B ` suc m ) ) |
| 70 | entr | |- ( ( ( ( B ` m ) |_| ( B ` m ) ) ~~ ~P suc m /\ ~P suc m ~~ ( B ` suc m ) ) -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ( B ` suc m ) ) |
|
| 71 | 60 69 70 | syl2anc | |- ( ( A. k e. suc suc m ( B ` k ) ~~ ~P k /\ m e. _om ) -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ( B ` suc m ) ) |
| 72 | 71 | ancoms | |- ( ( m e. _om /\ A. k e. suc suc m ( B ` k ) ~~ ~P k ) -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ( B ` suc m ) ) |
| 73 | nnfi | |- ( m e. _om -> m e. Fin ) |
|
| 74 | pwfi | |- ( m e. Fin <-> ~P m e. Fin ) |
|
| 75 | isfinite | |- ( ~P m e. Fin <-> ~P m ~< _om ) |
|
| 76 | 74 75 | bitri | |- ( m e. Fin <-> ~P m ~< _om ) |
| 77 | 73 76 | sylib | |- ( m e. _om -> ~P m ~< _om ) |
| 78 | ensdomtr | |- ( ( ( B ` m ) ~~ ~P m /\ ~P m ~< _om ) -> ( B ` m ) ~< _om ) |
|
| 79 | 46 77 78 | syl2an | |- ( ( A. k e. suc suc m ( B ` k ) ~~ ~P k /\ m e. _om ) -> ( B ` m ) ~< _om ) |
| 80 | isfinite | |- ( ( B ` m ) e. Fin <-> ( B ` m ) ~< _om ) |
|
| 81 | 79 80 | sylibr | |- ( ( A. k e. suc suc m ( B ` k ) ~~ ~P k /\ m e. _om ) -> ( B ` m ) e. Fin ) |
| 82 | 81 | ancoms | |- ( ( m e. _om /\ A. k e. suc suc m ( B ` k ) ~~ ~P k ) -> ( B ` m ) e. Fin ) |
| 83 | 39 42 | iunsuc | |- U_ k e. suc m ( B ` k ) = ( U_ k e. m ( B ` k ) u. ( B ` m ) ) |
| 84 | fvex | |- ( B ` k ) e. _V |
|
| 85 | 39 84 | iunex | |- U_ k e. m ( B ` k ) e. _V |
| 86 | fvex | |- ( B ` m ) e. _V |
|
| 87 | undjudom | |- ( ( U_ k e. m ( B ` k ) e. _V /\ ( B ` m ) e. _V ) -> ( U_ k e. m ( B ` k ) u. ( B ` m ) ) ~<_ ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ) |
|
| 88 | 85 86 87 | mp2an | |- ( U_ k e. m ( B ` k ) u. ( B ` m ) ) ~<_ ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) |
| 89 | 83 88 | eqbrtri | |- U_ k e. suc m ( B ` k ) ~<_ ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) |
| 90 | sdomtr | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) ~< _om ) -> U_ k e. m ( B ` k ) ~< _om ) |
|
| 91 | 80 90 | sylan2b | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> U_ k e. m ( B ` k ) ~< _om ) |
| 92 | isfinite | |- ( U_ k e. m ( B ` k ) e. Fin <-> U_ k e. m ( B ` k ) ~< _om ) |
|
| 93 | 91 92 | sylibr | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> U_ k e. m ( B ` k ) e. Fin ) |
| 94 | finnum | |- ( U_ k e. m ( B ` k ) e. Fin -> U_ k e. m ( B ` k ) e. dom card ) |
|
| 95 | 93 94 | syl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> U_ k e. m ( B ` k ) e. dom card ) |
| 96 | finnum | |- ( ( B ` m ) e. Fin -> ( B ` m ) e. dom card ) |
|
| 97 | 96 | adantl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( B ` m ) e. dom card ) |
| 98 | cardadju | |- ( ( U_ k e. m ( B ` k ) e. dom card /\ ( B ` m ) e. dom card ) -> ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~~ ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) ) |
|
| 99 | 95 97 98 | syl2anc | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~~ ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) ) |
| 100 | ficardom | |- ( U_ k e. m ( B ` k ) e. Fin -> ( card ` U_ k e. m ( B ` k ) ) e. _om ) |
|
| 101 | 93 100 | syl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( card ` U_ k e. m ( B ` k ) ) e. _om ) |
| 102 | ficardom | |- ( ( B ` m ) e. Fin -> ( card ` ( B ` m ) ) e. _om ) |
|
| 103 | 102 | adantl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( card ` ( B ` m ) ) e. _om ) |
| 104 | cardid2 | |- ( U_ k e. m ( B ` k ) e. dom card -> ( card ` U_ k e. m ( B ` k ) ) ~~ U_ k e. m ( B ` k ) ) |
|
| 105 | 93 94 104 | 3syl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( card ` U_ k e. m ( B ` k ) ) ~~ U_ k e. m ( B ` k ) ) |
| 106 | simpl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) |
|
| 107 | cardid2 | |- ( ( B ` m ) e. dom card -> ( card ` ( B ` m ) ) ~~ ( B ` m ) ) |
|
| 108 | ensym | |- ( ( card ` ( B ` m ) ) ~~ ( B ` m ) -> ( B ` m ) ~~ ( card ` ( B ` m ) ) ) |
|
| 109 | 96 107 108 | 3syl | |- ( ( B ` m ) e. Fin -> ( B ` m ) ~~ ( card ` ( B ` m ) ) ) |
| 110 | 109 | adantl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( B ` m ) ~~ ( card ` ( B ` m ) ) ) |
| 111 | ensdomtr | |- ( ( ( card ` U_ k e. m ( B ` k ) ) ~~ U_ k e. m ( B ` k ) /\ U_ k e. m ( B ` k ) ~< ( B ` m ) ) -> ( card ` U_ k e. m ( B ` k ) ) ~< ( B ` m ) ) |
|
| 112 | sdomentr | |- ( ( ( card ` U_ k e. m ( B ` k ) ) ~< ( B ` m ) /\ ( B ` m ) ~~ ( card ` ( B ` m ) ) ) -> ( card ` U_ k e. m ( B ` k ) ) ~< ( card ` ( B ` m ) ) ) |
|
| 113 | 111 112 | sylan | |- ( ( ( ( card ` U_ k e. m ( B ` k ) ) ~~ U_ k e. m ( B ` k ) /\ U_ k e. m ( B ` k ) ~< ( B ` m ) ) /\ ( B ` m ) ~~ ( card ` ( B ` m ) ) ) -> ( card ` U_ k e. m ( B ` k ) ) ~< ( card ` ( B ` m ) ) ) |
| 114 | 105 106 110 113 | syl21anc | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( card ` U_ k e. m ( B ` k ) ) ~< ( card ` ( B ` m ) ) ) |
| 115 | cardon | |- ( card ` U_ k e. m ( B ` k ) ) e. On |
|
| 116 | cardon | |- ( card ` ( B ` m ) ) e. On |
|
| 117 | onenon | |- ( ( card ` ( B ` m ) ) e. On -> ( card ` ( B ` m ) ) e. dom card ) |
|
| 118 | 116 117 | ax-mp | |- ( card ` ( B ` m ) ) e. dom card |
| 119 | cardsdomel | |- ( ( ( card ` U_ k e. m ( B ` k ) ) e. On /\ ( card ` ( B ` m ) ) e. dom card ) -> ( ( card ` U_ k e. m ( B ` k ) ) ~< ( card ` ( B ` m ) ) <-> ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( card ` ( B ` m ) ) ) ) ) |
|
| 120 | 115 118 119 | mp2an | |- ( ( card ` U_ k e. m ( B ` k ) ) ~< ( card ` ( B ` m ) ) <-> ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( card ` ( B ` m ) ) ) ) |
| 121 | cardidm | |- ( card ` ( card ` ( B ` m ) ) ) = ( card ` ( B ` m ) ) |
|
| 122 | 121 | eleq2i | |- ( ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( card ` ( B ` m ) ) ) <-> ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( B ` m ) ) ) |
| 123 | 120 122 | bitri | |- ( ( card ` U_ k e. m ( B ` k ) ) ~< ( card ` ( B ` m ) ) <-> ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( B ` m ) ) ) |
| 124 | 114 123 | sylib | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( B ` m ) ) ) |
| 125 | nnaordr | |- ( ( ( card ` U_ k e. m ( B ` k ) ) e. _om /\ ( card ` ( B ` m ) ) e. _om /\ ( card ` ( B ` m ) ) e. _om ) -> ( ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( B ` m ) ) <-> ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) e. ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) ) |
|
| 126 | 125 | biimpa | |- ( ( ( ( card ` U_ k e. m ( B ` k ) ) e. _om /\ ( card ` ( B ` m ) ) e. _om /\ ( card ` ( B ` m ) ) e. _om ) /\ ( card ` U_ k e. m ( B ` k ) ) e. ( card ` ( B ` m ) ) ) -> ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) e. ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
| 127 | 101 103 103 124 126 | syl31anc | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) e. ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
| 128 | nnacl | |- ( ( ( card ` ( B ` m ) ) e. _om /\ ( card ` ( B ` m ) ) e. _om ) -> ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) e. _om ) |
|
| 129 | 102 102 128 | syl2anc | |- ( ( B ` m ) e. Fin -> ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) e. _om ) |
| 130 | cardnn | |- ( ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) e. _om -> ( card ` ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) = ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
|
| 131 | 129 130 | syl | |- ( ( B ` m ) e. Fin -> ( card ` ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) = ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
| 132 | 131 | adantl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( card ` ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) = ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
| 133 | 127 132 | eleqtrrd | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) e. ( card ` ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) ) |
| 134 | cardsdomelir | |- ( ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) e. ( card ` ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) -> ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) ~< ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
|
| 135 | 133 134 | syl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) ~< ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
| 136 | ensdomtr | |- ( ( ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~~ ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) /\ ( ( card ` U_ k e. m ( B ` k ) ) +o ( card ` ( B ` m ) ) ) ~< ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) -> ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~< ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
|
| 137 | 99 135 136 | syl2anc | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~< ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
| 138 | cardadju | |- ( ( ( B ` m ) e. dom card /\ ( B ` m ) e. dom card ) -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
|
| 139 | 96 96 138 | syl2anc | |- ( ( B ` m ) e. Fin -> ( ( B ` m ) |_| ( B ` m ) ) ~~ ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ) |
| 140 | 139 | ensymd | |- ( ( B ` m ) e. Fin -> ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ~~ ( ( B ` m ) |_| ( B ` m ) ) ) |
| 141 | 140 | adantl | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ~~ ( ( B ` m ) |_| ( B ` m ) ) ) |
| 142 | sdomentr | |- ( ( ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~< ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) /\ ( ( card ` ( B ` m ) ) +o ( card ` ( B ` m ) ) ) ~~ ( ( B ` m ) |_| ( B ` m ) ) ) -> ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~< ( ( B ` m ) |_| ( B ` m ) ) ) |
|
| 143 | 137 141 142 | syl2anc | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~< ( ( B ` m ) |_| ( B ` m ) ) ) |
| 144 | domsdomtr | |- ( ( U_ k e. suc m ( B ` k ) ~<_ ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) /\ ( U_ k e. m ( B ` k ) |_| ( B ` m ) ) ~< ( ( B ` m ) |_| ( B ` m ) ) ) -> U_ k e. suc m ( B ` k ) ~< ( ( B ` m ) |_| ( B ` m ) ) ) |
|
| 145 | 89 143 144 | sylancr | |- ( ( U_ k e. m ( B ` k ) ~< ( B ` m ) /\ ( B ` m ) e. Fin ) -> U_ k e. suc m ( B ` k ) ~< ( ( B ` m ) |_| ( B ` m ) ) ) |
| 146 | 145 | expcom | |- ( ( B ` m ) e. Fin -> ( U_ k e. m ( B ` k ) ~< ( B ` m ) -> U_ k e. suc m ( B ` k ) ~< ( ( B ` m ) |_| ( B ` m ) ) ) ) |
| 147 | 82 146 | syl | |- ( ( m e. _om /\ A. k e. suc suc m ( B ` k ) ~~ ~P k ) -> ( U_ k e. m ( B ` k ) ~< ( B ` m ) -> U_ k e. suc m ( B ` k ) ~< ( ( B ` m ) |_| ( B ` m ) ) ) ) |
| 148 | sdomentr | |- ( ( U_ k e. suc m ( B ` k ) ~< ( ( B ` m ) |_| ( B ` m ) ) /\ ( ( B ` m ) |_| ( B ` m ) ) ~~ ( B ` suc m ) ) -> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) |
|
| 149 | 148 | expcom | |- ( ( ( B ` m ) |_| ( B ` m ) ) ~~ ( B ` suc m ) -> ( U_ k e. suc m ( B ` k ) ~< ( ( B ` m ) |_| ( B ` m ) ) -> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) ) |
| 150 | 72 147 149 | sylsyld | |- ( ( m e. _om /\ A. k e. suc suc m ( B ` k ) ~~ ~P k ) -> ( U_ k e. m ( B ` k ) ~< ( B ` m ) -> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) ) |
| 151 | 38 150 | syld | |- ( ( m e. _om /\ A. k e. suc suc m ( B ` k ) ~~ ~P k ) -> ( ( A. k e. suc m ( B ` k ) ~~ ~P k -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) -> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) ) |
| 152 | 151 | ex | |- ( m e. _om -> ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> ( ( A. k e. suc m ( B ` k ) ~~ ~P k -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) -> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) ) ) |
| 153 | 152 | com23 | |- ( m e. _om -> ( ( A. k e. suc m ( B ` k ) ~~ ~P k -> U_ k e. m ( B ` k ) ~< ( B ` m ) ) -> ( A. k e. suc suc m ( B ` k ) ~~ ~P k -> U_ k e. suc m ( B ` k ) ~< ( B ` suc m ) ) ) ) |
| 154 | 6 12 18 32 153 | finds1 | |- ( n e. _om -> ( A. k e. suc n ( B ` k ) ~~ ~P k -> U_ k e. n ( B ` k ) ~< ( B ` n ) ) ) |
| 155 | 154 | imp | |- ( ( n e. _om /\ A. k e. suc n ( B ` k ) ~~ ~P k ) -> U_ k e. n ( B ` k ) ~< ( B ` n ) ) |