This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 4-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) | |
| 2 | 1 | biimpi | ⊢ ( 𝐴 ∈ Fin → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
| 3 | finnum | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ dom card ) | |
| 4 | cardid2 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| 6 | entr | ⊢ ( ( ( card ‘ 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≈ 𝑥 ) → ( card ‘ 𝐴 ) ≈ 𝑥 ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥 ) → ( card ‘ 𝐴 ) ≈ 𝑥 ) |
| 8 | cardon | ⊢ ( card ‘ 𝐴 ) ∈ On | |
| 9 | onomeneq | ⊢ ( ( ( card ‘ 𝐴 ) ∈ On ∧ 𝑥 ∈ ω ) → ( ( card ‘ 𝐴 ) ≈ 𝑥 ↔ ( card ‘ 𝐴 ) = 𝑥 ) ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝑥 ∈ ω → ( ( card ‘ 𝐴 ) ≈ 𝑥 ↔ ( card ‘ 𝐴 ) = 𝑥 ) ) |
| 11 | 7 10 | imbitrid | ⊢ ( 𝑥 ∈ ω → ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥 ) → ( card ‘ 𝐴 ) = 𝑥 ) ) |
| 12 | eleq1a | ⊢ ( 𝑥 ∈ ω → ( ( card ‘ 𝐴 ) = 𝑥 → ( card ‘ 𝐴 ) ∈ ω ) ) | |
| 13 | 11 12 | syld | ⊢ ( 𝑥 ∈ ω → ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥 ) → ( card ‘ 𝐴 ) ∈ ω ) ) |
| 14 | 13 | expcomd | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) ) ) |
| 15 | 14 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) ) |
| 16 | 2 15 | mpcom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |