This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2eleq | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 = { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn | ⊢ 2o ∈ ω | |
| 2 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 3 | 1 2 | ax-mp | ⊢ 2o ∈ Fin |
| 4 | enfi | ⊢ ( 𝑃 ≈ 2o → ( 𝑃 ∈ Fin ↔ 2o ∈ Fin ) ) | |
| 5 | 3 4 | mpbiri | ⊢ ( 𝑃 ≈ 2o → 𝑃 ∈ Fin ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ Fin ) |
| 7 | simpl | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ 𝑃 ) | |
| 8 | 1onn | ⊢ 1o ∈ ω | |
| 9 | simpr | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) | |
| 10 | df-2o | ⊢ 2o = suc 1o | |
| 11 | 9 10 | breqtrdi | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ suc 1o ) |
| 12 | dif1ennn | ⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) | |
| 13 | 8 11 7 12 | mp3an2i | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
| 14 | en1uniel | ⊢ ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ) |
| 16 | eldifsn | ⊢ ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ↔ ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ∧ ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ∧ ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) ) |
| 18 | 17 | simpld | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ) |
| 19 | 7 18 | prssd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ⊆ 𝑃 ) |
| 20 | 17 | simprd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) |
| 21 | 20 | necomd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) |
| 22 | enpr2 | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ∧ 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 2o ) | |
| 23 | 7 18 21 22 | syl3anc | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 2o ) |
| 24 | ensym | ⊢ ( 𝑃 ≈ 2o → 2o ≈ 𝑃 ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 2o ≈ 𝑃 ) |
| 26 | entr | ⊢ ( ( { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 2o ∧ 2o ≈ 𝑃 ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 𝑃 ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 𝑃 ) |
| 28 | fisseneq | ⊢ ( ( 𝑃 ∈ Fin ∧ { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ⊆ 𝑃 ∧ { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 𝑃 ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } = 𝑃 ) | |
| 29 | 6 19 27 28 | syl3anc | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } = 𝑃 ) |
| 30 | 29 | eqcomd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 = { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ) |