This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| Assertion | pmtrfconj | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∈ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | 1 2 | pmtrfb | ⊢ ( 𝐹 ∈ 𝑅 ↔ ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
| 4 | 3 | simp1bi | ⊢ ( 𝐹 ∈ 𝑅 → 𝐷 ∈ V ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐷 ∈ V ) |
| 6 | simpr | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) | |
| 7 | 1 2 | pmtrff1o | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
| 9 | f1oco | ⊢ ( ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 11 | f1ocnv | ⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
| 13 | f1oco | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ∧ ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐷 –1-1-onto→ 𝐷 ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 15 | f1of | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → 𝐹 : 𝐷 ⟶ 𝐷 ) | |
| 16 | 7 15 | syl | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐹 : 𝐷 ⟶ 𝐷 ) |
| 18 | f1omvdconj | ⊢ ( ( 𝐹 : 𝐷 ⟶ 𝐷 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) | |
| 19 | 17 6 18 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) |
| 20 | f1of1 | ⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 → 𝐺 : 𝐷 –1-1→ 𝐷 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐺 : 𝐷 –1-1→ 𝐷 ) |
| 22 | difss | ⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 | |
| 23 | dmss | ⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) | |
| 24 | 22 23 | ax-mp | ⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
| 25 | 24 17 | fssdm | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
| 26 | 5 25 | ssexd | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( 𝐹 ∖ I ) ∈ V ) |
| 27 | f1imaeng | ⊢ ( ( 𝐺 : 𝐷 –1-1→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ∈ V ) → ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ≈ dom ( 𝐹 ∖ I ) ) | |
| 28 | 21 25 26 27 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ≈ dom ( 𝐹 ∖ I ) ) |
| 29 | 19 28 | eqbrtrd | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ dom ( 𝐹 ∖ I ) ) |
| 30 | 3 | simp3bi | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( 𝐹 ∖ I ) ≈ 2o ) |
| 32 | entr | ⊢ ( ( dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ dom ( 𝐹 ∖ I ) ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ 2o ) | |
| 33 | 29 31 32 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ 2o ) |
| 34 | 1 2 | pmtrfb | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∈ 𝑅 ↔ ( 𝐷 ∈ V ∧ ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ 2o ) ) |
| 35 | 5 14 33 34 | syl3anbrc | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∈ 𝑅 ) |