This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| Assertion | pmtrfcnv | ⊢ ( 𝐹 ∈ 𝑅 → ◡ 𝐹 = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | eqid | ⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) | |
| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
| 5 | 4 | simpld | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
| 6 | 1 | pmtrf | ⊢ ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
| 7 | 5 6 | syl | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
| 8 | 4 | simprd | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) |
| 9 | 8 | feq1d | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 : 𝐷 ⟶ 𝐷 ↔ ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) ) |
| 10 | 7 9 | mpbird | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
| 11 | 1 2 | pmtrfinv | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐷 ) ) |
| 12 | 10 10 11 11 | 2fcoidinvd | ⊢ ( 𝐹 ∈ 𝑅 → ◡ 𝐹 = 𝐹 ) |