This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjugation of a permutation takes the image of the moved subclass. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdconj | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) | |
| 2 | dmss | ⊢ ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ dom ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ dom ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) |
| 4 | dmcoss | ⊢ dom ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ⊆ dom ◡ 𝐺 | |
| 5 | 3 4 | sstri | ⊢ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ dom ◡ 𝐺 |
| 6 | f1ocnv | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) |
| 8 | f1odm | ⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 → dom ◡ 𝐺 = 𝐴 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ◡ 𝐺 = 𝐴 ) |
| 10 | 5 9 | sseqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ 𝐴 ) |
| 11 | 10 | sselda | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ) → 𝑥 ∈ 𝐴 ) |
| 12 | imassrn | ⊢ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ⊆ ran 𝐺 | |
| 13 | f1of | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → 𝐺 : 𝐴 ⟶ 𝐴 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝐴 ) |
| 15 | 14 | frnd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ran 𝐺 ⊆ 𝐴 ) |
| 16 | 12 15 | sstrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ⊆ 𝐴 ) |
| 17 | 16 | sselda | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) → 𝑥 ∈ 𝐴 ) |
| 18 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐴 ) | |
| 19 | fco | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐴 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐴 ) | |
| 20 | 14 18 19 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐴 ) |
| 21 | f1of | ⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 ⟶ 𝐴 ) | |
| 22 | 7 21 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ◡ 𝐺 : 𝐴 ⟶ 𝐴 ) |
| 23 | fco | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐴 ∧ ◡ 𝐺 : 𝐴 ⟶ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐴 ⟶ 𝐴 ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐴 ⟶ 𝐴 ) |
| 25 | 24 | ffnd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) Fn 𝐴 ) |
| 26 | fnelnfp | ⊢ ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) ≠ 𝑥 ) ) | |
| 27 | 25 26 | sylan | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 28 | f1ofn | ⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐺 Fn 𝐴 ) | |
| 29 | 7 28 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ◡ 𝐺 Fn 𝐴 ) |
| 30 | fvco2 | ⊢ ( ( ◡ 𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) | |
| 31 | 29 30 | sylan | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 32 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → 𝐹 Fn 𝐴 ) | |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 34 | ffvelcdm | ⊢ ( ( ◡ 𝐺 : 𝐴 ⟶ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) | |
| 35 | 22 34 | sylan | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 36 | fvco2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) | |
| 37 | 33 35 36 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 | 31 37 | eqtrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 39 | 38 | eqeq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = 𝑥 ↔ ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) = 𝑥 ) ) |
| 40 | simplr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 41 | simpll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐴 ) | |
| 42 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ 𝐴 ) | |
| 43 | 41 35 42 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ 𝐴 ) |
| 44 | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 45 | f1ocnvfvb | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) = 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) | |
| 46 | 40 43 44 45 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) = 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 47 | 39 46 | bitrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 48 | 47 | necon3bid | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) ≠ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 49 | necom | ⊢ ( ( ◡ 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ) | |
| 50 | f1of1 | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → 𝐺 : 𝐴 –1-1→ 𝐴 ) | |
| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 : 𝐴 –1-1→ 𝐴 ) |
| 52 | difss | ⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 | |
| 53 | dmss | ⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) | |
| 54 | 52 53 | ax-mp | ⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
| 55 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → dom 𝐹 = 𝐴 ) | |
| 56 | 54 55 | sseqtrid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) |
| 58 | f1elima | ⊢ ( ( 𝐺 : 𝐴 –1-1→ 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ↔ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ) ) | |
| 59 | 51 35 57 58 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ↔ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ) ) |
| 60 | f1ocnvfv2 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) | |
| 61 | 60 | adantll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
| 62 | 61 | eleq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 63 | fnelnfp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ) ) | |
| 64 | 33 35 63 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 65 | 59 62 64 | 3bitr3rd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 66 | 49 65 | bitrid | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 67 | 27 48 66 | 3bitrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 68 | 11 17 67 | eqrdav | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) |