This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1otrspeq | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 Fn 𝐴 ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → 𝐹 Fn 𝐴 ) |
| 3 | f1ofn | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → 𝐺 Fn 𝐴 ) | |
| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → 𝐺 Fn 𝐴 ) |
| 5 | 1onn | ⊢ 1o ∈ ω | |
| 6 | simplrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) | |
| 7 | simplrl | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → dom ( 𝐹 ∖ I ) ≈ 2o ) | |
| 8 | df-2o | ⊢ 2o = suc 1o | |
| 9 | 7 8 | breqtrdi | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → dom ( 𝐹 ∖ I ) ≈ suc 1o ) |
| 10 | 6 9 | eqbrtrd | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → dom ( 𝐺 ∖ I ) ≈ suc 1o ) |
| 11 | simpr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → 𝑥 ∈ dom ( 𝐺 ∖ I ) ) | |
| 12 | dif1ennn | ⊢ ( ( 1o ∈ ω ∧ dom ( 𝐺 ∖ I ) ≈ suc 1o ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ≈ 1o ) | |
| 13 | 5 10 11 12 | mp3an2i | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ≈ 1o ) |
| 14 | euen1b | ⊢ ( ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ≈ 1o ↔ ∃! 𝑦 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) | |
| 15 | eumo | ⊢ ( ∃! 𝑦 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) → ∃* 𝑦 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) | |
| 16 | 14 15 | sylbi | ⊢ ( ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ≈ 1o → ∃* 𝑦 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) |
| 17 | 13 16 | syl | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ∃* 𝑦 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) |
| 18 | f1omvdmvd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) | |
| 19 | 18 | ex | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) → ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) → ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 21 | eleq2 | ⊢ ( dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) → ( 𝑥 ∈ dom ( 𝐺 ∖ I ) ↔ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ) | |
| 22 | 21 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → ( 𝑥 ∈ dom ( 𝐺 ∖ I ) ↔ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ) |
| 23 | difeq1 | ⊢ ( dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) → ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) = ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) | |
| 24 | 23 | eleq2d | ⊢ ( dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 25 | 24 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 26 | 20 22 25 | 3imtr4d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → ( 𝑥 ∈ dom ( 𝐺 ∖ I ) → ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) |
| 28 | f1omvdmvd | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) | |
| 29 | 28 | ad4ant24 | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) |
| 30 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 31 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 32 | 30 31 | pm3.2i | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ V ∧ ( 𝐺 ‘ 𝑥 ) ∈ V ) |
| 33 | eleq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) ) | |
| 34 | eleq1 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ↔ ( 𝐺 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) ) | |
| 35 | 33 34 | moi | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ V ∧ ( 𝐺 ‘ 𝑥 ) ∈ V ) ∧ ∃* 𝑦 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 36 | 32 35 | mp3an1 | ⊢ ( ( ∃* 𝑦 𝑦 ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( dom ( 𝐺 ∖ I ) ∖ { 𝑥 } ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 37 | 17 27 29 36 | syl12anc | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 38 | 37 | adantlr | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 39 | simplrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) | |
| 40 | 39 | eleq2d | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐺 ∖ I ) ↔ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ) |
| 41 | fnelnfp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) | |
| 42 | 2 41 | sylan | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 43 | 40 42 | bitrd | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐺 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 44 | 43 | necon2bbid | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ¬ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) ) |
| 45 | 44 | biimpar | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 46 | fnelnfp | ⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐺 ∖ I ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ 𝑥 ) ) | |
| 47 | 4 46 | sylan | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐺 ∖ I ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 48 | 47 | necon2bbid | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑥 ↔ ¬ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) ) |
| 49 | 48 | biimpar | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐺 ‘ 𝑥 ) = 𝑥 ) |
| 50 | 45 49 | eqtr4d | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ dom ( 𝐺 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 51 | 38 50 | pm2.61dan | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 52 | 2 4 51 | eqfnfvd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ dom ( 𝐺 ∖ I ) = dom ( 𝐹 ∖ I ) ) ) → 𝐹 = 𝐺 ) |