This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| pmtrfrn.p | ⊢ 𝑃 = dom ( 𝐹 ∖ I ) | ||
| Assertion | pmtrffv | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | pmtrfrn.p | ⊢ 𝑃 = dom ( 𝐹 ∖ I ) | |
| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) |
| 5 | 4 | simprd | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 = ( 𝑇 ‘ 𝑃 ) ) |
| 6 | 5 | fveq1d | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ‘ 𝑍 ) = ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑍 ) = ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) ) |
| 8 | 4 | simpld | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ) |
| 9 | 1 | pmtrfv | ⊢ ( ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
| 10 | 8 9 | sylan | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |