This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division algorithm for ordinal exponentiation. (This version of oeeu gives an explicit expression for the unique solution of the equation, in terms of the solution P to omeu .) (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oeeu.1 | ⊢ 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } | |
| oeeu.2 | ⊢ 𝑃 = ( ℩ 𝑤 ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) | ||
| oeeu.3 | ⊢ 𝑌 = ( 1st ‘ 𝑃 ) | ||
| oeeu.4 | ⊢ 𝑍 = ( 2nd ‘ 𝑃 ) | ||
| Assertion | oeeui | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeeu.1 | ⊢ 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } | |
| 2 | oeeu.2 | ⊢ 𝑃 = ( ℩ 𝑤 ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) | |
| 3 | oeeu.3 | ⊢ 𝑌 = ( 1st ‘ 𝑃 ) | |
| 4 | oeeu.4 | ⊢ 𝑍 = ( 2nd ‘ 𝑃 ) | |
| 5 | eldifi | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐴 ∈ On ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐴 ∈ On ) |
| 8 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 ∈ On ) | |
| 9 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
| 11 | om1 | ⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) = ( 𝐴 ↑o 𝐶 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) = ( 𝐴 ↑o 𝐶 ) ) |
| 13 | df1o2 | ⊢ 1o = { ∅ } | |
| 14 | dif1o | ⊢ ( 𝐷 ∈ ( 𝐴 ∖ 1o ) ↔ ( 𝐷 ∈ 𝐴 ∧ 𝐷 ≠ ∅ ) ) | |
| 15 | 14 | simprbi | ⊢ ( 𝐷 ∈ ( 𝐴 ∖ 1o ) → 𝐷 ≠ ∅ ) |
| 16 | 15 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐷 ≠ ∅ ) |
| 17 | eldifi | ⊢ ( 𝐷 ∈ ( 𝐴 ∖ 1o ) → 𝐷 ∈ 𝐴 ) | |
| 18 | 17 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐷 ∈ 𝐴 ) |
| 19 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝐷 ∈ 𝐴 ) → 𝐷 ∈ On ) | |
| 20 | 7 18 19 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐷 ∈ On ) |
| 21 | on0eln0 | ⊢ ( 𝐷 ∈ On → ( ∅ ∈ 𝐷 ↔ 𝐷 ≠ ∅ ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ∅ ∈ 𝐷 ↔ 𝐷 ≠ ∅ ) ) |
| 23 | 16 22 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ∅ ∈ 𝐷 ) |
| 24 | 23 | snssd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → { ∅ } ⊆ 𝐷 ) |
| 25 | 13 24 | eqsstrid | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 1o ⊆ 𝐷 ) |
| 26 | 1on | ⊢ 1o ∈ On | |
| 27 | 26 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 1o ∈ On ) |
| 28 | omwordi | ⊢ ( ( 1o ∈ On ∧ 𝐷 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) → ( 1o ⊆ 𝐷 → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) ) | |
| 29 | 27 20 10 28 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 1o ⊆ 𝐷 → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) ) |
| 30 | 25 29 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) |
| 31 | 12 30 | eqsstrrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) |
| 32 | omcl | ⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐷 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) | |
| 33 | 10 20 32 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) |
| 34 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) | |
| 35 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) → 𝐸 ∈ On ) | |
| 36 | 10 34 35 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐸 ∈ On ) |
| 37 | oaword1 | ⊢ ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ) | |
| 38 | 33 36 37 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ) |
| 39 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) | |
| 40 | 38 39 | sseqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ) |
| 41 | 31 40 | sstrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ) |
| 42 | 1 | oeeulem | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝑋 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
| 43 | 42 | simp3d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
| 45 | 42 | simp1d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ On ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝑋 ∈ On ) |
| 47 | onsuc | ⊢ ( 𝑋 ∈ On → suc 𝑋 ∈ On ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝑋 ∈ On ) |
| 49 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝑋 ∈ On ) → ( 𝐴 ↑o suc 𝑋 ) ∈ On ) | |
| 50 | 7 48 49 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o suc 𝑋 ) ∈ On ) |
| 51 | ontr2 | ⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ ( 𝐴 ↑o suc 𝑋 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) | |
| 52 | 10 50 51 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
| 53 | 41 44 52 | mp2and | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
| 54 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐴 ∈ ( On ∖ 2o ) ) | |
| 55 | oeord | ⊢ ( ( 𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐶 ∈ suc 𝑋 ↔ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) | |
| 56 | 8 48 54 55 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐶 ∈ suc 𝑋 ↔ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
| 57 | 53 56 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 ∈ suc 𝑋 ) |
| 58 | onsssuc | ⊢ ( ( 𝐶 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋 ) ) | |
| 59 | 8 46 58 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋 ) ) |
| 60 | 57 59 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 ⊆ 𝑋 ) |
| 61 | 42 | simp2d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
| 63 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 64 | 7 63 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → Ord 𝐴 ) |
| 65 | ordsucss | ⊢ ( Ord 𝐴 → ( 𝐷 ∈ 𝐴 → suc 𝐷 ⊆ 𝐴 ) ) | |
| 66 | 64 18 65 | sylc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝐷 ⊆ 𝐴 ) |
| 67 | onsuc | ⊢ ( 𝐷 ∈ On → suc 𝐷 ∈ On ) | |
| 68 | 20 67 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝐷 ∈ On ) |
| 69 | dif20el | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) | |
| 70 | 54 69 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ∅ ∈ 𝐴 ) |
| 71 | oen0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) | |
| 72 | 7 8 70 71 | syl21anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 73 | omword | ⊢ ( ( ( suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) → ( suc 𝐷 ⊆ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) | |
| 74 | 68 7 10 72 73 | syl31anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( suc 𝐷 ⊆ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
| 75 | 66 74 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 76 | oaord | ⊢ ( ( 𝐸 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ∧ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) → ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ↔ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) ) | |
| 77 | 36 10 33 76 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ↔ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) ) |
| 78 | 34 77 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
| 79 | 39 78 | eqeltrrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
| 80 | odi | ⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐷 ∈ On ∧ 1o ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐷 +o 1o ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ) ) | |
| 81 | 10 20 27 80 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐷 +o 1o ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ) ) |
| 82 | oa1suc | ⊢ ( 𝐷 ∈ On → ( 𝐷 +o 1o ) = suc 𝐷 ) | |
| 83 | 20 82 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐷 +o 1o ) = suc 𝐷 ) |
| 84 | 83 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐷 +o 1o ) ) = ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ) |
| 85 | 12 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
| 86 | 81 84 85 | 3eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
| 87 | 79 86 | eleqtrrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ) |
| 88 | 75 87 | sseldd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 89 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) | |
| 90 | 7 8 89 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 91 | 88 90 | eleqtrrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝐶 ) ) |
| 92 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) | |
| 93 | 7 46 92 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
| 94 | onsuc | ⊢ ( 𝐶 ∈ On → suc 𝐶 ∈ On ) | |
| 95 | 94 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝐶 ∈ On ) |
| 96 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) ∈ On ) | |
| 97 | 7 95 96 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o suc 𝐶 ) ∈ On ) |
| 98 | ontr2 | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐴 ↑o suc 𝐶 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) | |
| 99 | 93 97 98 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) |
| 100 | 62 91 99 | mp2and | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) |
| 101 | oeord | ⊢ ( ( 𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑋 ∈ suc 𝐶 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) | |
| 102 | 46 95 54 101 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝑋 ∈ suc 𝐶 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) |
| 103 | 100 102 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝑋 ∈ suc 𝐶 ) |
| 104 | onsssuc | ⊢ ( ( 𝑋 ∈ On ∧ 𝐶 ∈ On ) → ( 𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶 ) ) | |
| 105 | 46 8 104 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶 ) ) |
| 106 | 103 105 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝑋 ⊆ 𝐶 ) |
| 107 | 60 106 | eqssd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 = 𝑋 ) |
| 108 | 107 20 | jca | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) |
| 109 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐶 = 𝑋 ) | |
| 110 | 45 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝑋 ∈ On ) |
| 111 | 109 110 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐶 ∈ On ) |
| 112 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐴 ∈ On ) |
| 113 | 112 111 9 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
| 114 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ On ) | |
| 115 | 113 114 32 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) |
| 116 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) | |
| 117 | 113 116 35 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐸 ∈ On ) |
| 118 | 115 117 37 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ) |
| 119 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) | |
| 120 | 118 119 | sseqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ) |
| 121 | 43 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
| 122 | suceq | ⊢ ( 𝐶 = 𝑋 → suc 𝐶 = suc 𝑋 ) | |
| 123 | 122 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → suc 𝐶 = suc 𝑋 ) |
| 124 | 123 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o suc 𝐶 ) = ( 𝐴 ↑o suc 𝑋 ) ) |
| 125 | 112 111 89 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 126 | 124 125 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o suc 𝑋 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 127 | 121 126 | eleqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 128 | omcl | ⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ∈ On ) | |
| 129 | 113 112 128 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ∈ On ) |
| 130 | ontr2 | ⊢ ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ∧ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ∈ On ) → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) | |
| 131 | 115 129 130 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
| 132 | 120 127 131 | mp2and | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 133 | 69 | adantr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∅ ∈ 𝐴 ) |
| 134 | 133 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ∅ ∈ 𝐴 ) |
| 135 | 112 111 134 71 | syl21anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 136 | omord2 | ⊢ ( ( ( 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) → ( 𝐷 ∈ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) | |
| 137 | 114 112 113 135 136 | syl31anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐷 ∈ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
| 138 | 132 137 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ 𝐴 ) |
| 139 | 109 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝐶 ) = ( 𝐴 ↑o 𝑋 ) ) |
| 140 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
| 141 | 139 140 | eqsstrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ) |
| 142 | eldifi | ⊢ ( 𝐵 ∈ ( On ∖ 1o ) → 𝐵 ∈ On ) | |
| 143 | 142 | adantl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ On ) |
| 144 | 143 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ On ) |
| 145 | ontri1 | ⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) | |
| 146 | 113 144 145 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 147 | 141 146 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 148 | om0 | ⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) | |
| 149 | 113 148 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) |
| 150 | 149 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) = ( ∅ +o 𝐸 ) ) |
| 151 | oa0r | ⊢ ( 𝐸 ∈ On → ( ∅ +o 𝐸 ) = 𝐸 ) | |
| 152 | 117 151 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ∅ +o 𝐸 ) = 𝐸 ) |
| 153 | 150 152 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) = 𝐸 ) |
| 154 | 153 116 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 155 | oveq2 | ⊢ ( 𝐷 = ∅ → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) = ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ) | |
| 156 | 155 | oveq1d | ⊢ ( 𝐷 = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) ) |
| 157 | 156 | eleq1d | ⊢ ( 𝐷 = ∅ → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 158 | 154 157 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐷 = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 159 | 119 | eleq1d | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 160 | 158 159 | sylibd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐷 = ∅ → 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 161 | 160 | necon3bd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) → 𝐷 ≠ ∅ ) ) |
| 162 | 147 161 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ≠ ∅ ) |
| 163 | 138 162 14 | sylanbrc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ ( 𝐴 ∖ 1o ) ) |
| 164 | 111 163 | jca | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) |
| 165 | 108 164 | impbida | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) → ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ↔ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) ) |
| 166 | 165 | ex | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) → ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ↔ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) ) ) |
| 167 | 166 | pm5.32rd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ) |
| 168 | anass | ⊢ ( ( ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ) | |
| 169 | 167 168 | bitrdi | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ) ) |
| 170 | 3anass | ⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) | |
| 171 | oveq2 | ⊢ ( 𝐶 = 𝑋 → ( 𝐴 ↑o 𝐶 ) = ( 𝐴 ↑o 𝑋 ) ) | |
| 172 | 171 | eleq2d | ⊢ ( 𝐶 = 𝑋 → ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ↔ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 173 | 171 | oveq1d | ⊢ ( 𝐶 = 𝑋 → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) ) |
| 174 | 173 | oveq1d | ⊢ ( 𝐶 = 𝑋 → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) ) |
| 175 | 174 | eqeq1d | ⊢ ( 𝐶 = 𝑋 → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) |
| 176 | 172 175 | 3anbi23d | ⊢ ( 𝐶 = 𝑋 → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) |
| 177 | 170 176 | bitr3id | ⊢ ( 𝐶 = 𝑋 → ( ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) |
| 178 | 6 45 92 | syl2anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
| 179 | oen0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝑋 ) ) | |
| 180 | 6 45 133 179 | syl21anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∅ ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 181 | 180 | ne0d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ≠ ∅ ) |
| 182 | omeu | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ≠ ∅ ) → ∃! 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) | |
| 183 | opeq1 | ⊢ ( 𝑦 = 𝑑 → 〈 𝑦 , 𝑧 〉 = 〈 𝑑 , 𝑧 〉 ) | |
| 184 | 183 | eqeq2d | ⊢ ( 𝑦 = 𝑑 → ( 𝑤 = 〈 𝑦 , 𝑧 〉 ↔ 𝑤 = 〈 𝑑 , 𝑧 〉 ) ) |
| 185 | oveq2 | ⊢ ( 𝑦 = 𝑑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) ) | |
| 186 | 185 | oveq1d | ⊢ ( 𝑦 = 𝑑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) ) |
| 187 | 186 | eqeq1d | ⊢ ( 𝑦 = 𝑑 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ) ) |
| 188 | 184 187 | anbi12d | ⊢ ( 𝑦 = 𝑑 → ( ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ( 𝑤 = 〈 𝑑 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ) ) ) |
| 189 | opeq2 | ⊢ ( 𝑧 = 𝑒 → 〈 𝑑 , 𝑧 〉 = 〈 𝑑 , 𝑒 〉 ) | |
| 190 | 189 | eqeq2d | ⊢ ( 𝑧 = 𝑒 → ( 𝑤 = 〈 𝑑 , 𝑧 〉 ↔ 𝑤 = 〈 𝑑 , 𝑒 〉 ) ) |
| 191 | oveq2 | ⊢ ( 𝑧 = 𝑒 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) ) | |
| 192 | 191 | eqeq1d | ⊢ ( 𝑧 = 𝑒 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
| 193 | 190 192 | anbi12d | ⊢ ( 𝑧 = 𝑒 → ( ( 𝑤 = 〈 𝑑 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ) ↔ ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
| 194 | 188 193 | cbvrex2vw | ⊢ ( ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
| 195 | eqeq1 | ⊢ ( 𝑤 = 𝑎 → ( 𝑤 = 〈 𝑑 , 𝑒 〉 ↔ 𝑎 = 〈 𝑑 , 𝑒 〉 ) ) | |
| 196 | 195 | anbi1d | ⊢ ( 𝑤 = 𝑎 → ( ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ↔ ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
| 197 | 196 | 2rexbidv | ⊢ ( 𝑤 = 𝑎 → ( ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ↔ ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
| 198 | 194 197 | bitrid | ⊢ ( 𝑤 = 𝑎 → ( ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
| 199 | 198 | cbviotavw | ⊢ ( ℩ 𝑤 ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) = ( ℩ 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
| 200 | 2 199 | eqtri | ⊢ 𝑃 = ( ℩ 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
| 201 | oveq2 | ⊢ ( 𝑑 = 𝐷 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) ) | |
| 202 | 201 | oveq1d | ⊢ ( 𝑑 = 𝐷 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) ) |
| 203 | 202 | eqeq1d | ⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) = 𝐵 ) ) |
| 204 | oveq2 | ⊢ ( 𝑒 = 𝐸 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) ) | |
| 205 | 204 | eqeq1d | ⊢ ( 𝑒 = 𝐸 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) |
| 206 | 200 3 4 203 205 | opiota | ⊢ ( ∃! 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
| 207 | 182 206 | syl | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ≠ ∅ ) → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
| 208 | 178 143 181 207 | syl3anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
| 209 | 177 208 | sylan9bbr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ 𝐶 = 𝑋 ) → ( ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
| 210 | 209 | pm5.32da | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐶 = 𝑋 ∧ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) ) |
| 211 | 169 210 | bitrd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) ) |
| 212 | 3an4anass | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) | |
| 213 | 3anass | ⊢ ( ( 𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) | |
| 214 | 211 212 213 | 3bitr4g | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |