This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oeeu . (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oeeu.1 | ⊢ 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } | |
| Assertion | oeeulem | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝑋 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeeu.1 | ⊢ 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } | |
| 2 | eldifi | ⊢ ( 𝐵 ∈ ( On ∖ 1o ) → 𝐵 ∈ On ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ On ) |
| 4 | onsuc | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝐵 ∈ On ) |
| 6 | oeworde | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ suc 𝐵 ∈ On ) → suc 𝐵 ⊆ ( 𝐴 ↑o suc 𝐵 ) ) | |
| 7 | 5 6 | syldan | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝐵 ⊆ ( 𝐴 ↑o suc 𝐵 ) ) |
| 8 | sucidg | ⊢ ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 ) | |
| 9 | 3 8 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ suc 𝐵 ) |
| 10 | 7 9 | sseldd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝐵 ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = suc 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝐵 ) ) | |
| 12 | 11 | eleq2d | ⊢ ( 𝑥 = suc 𝐵 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ↑o suc 𝐵 ) ) ) |
| 13 | 12 | rspcev | ⊢ ( ( suc 𝐵 ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝐵 ) ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ) |
| 14 | 5 10 13 | syl2anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ) |
| 15 | onintrab2 | ⊢ ( ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) |
| 17 | onuni | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On → ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) |
| 19 | 1 18 | eqeltrid | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ On ) |
| 20 | sucidg | ⊢ ( 𝑋 ∈ On → 𝑋 ∈ suc 𝑋 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ suc 𝑋 ) |
| 22 | suceq | ⊢ ( 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → suc 𝑋 = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) | |
| 23 | 1 22 | ax-mp | ⊢ suc 𝑋 = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } |
| 24 | dif1o | ⊢ ( 𝐵 ∈ ( On ∖ 1o ) ↔ ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ) | |
| 25 | 24 | simprbi | ⊢ ( 𝐵 ∈ ( On ∖ 1o ) → 𝐵 ≠ ∅ ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ≠ ∅ ) |
| 27 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ⊆ On | |
| 28 | rabn0 | ⊢ ( { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ) | |
| 29 | 14 28 | sylibr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ≠ ∅ ) |
| 30 | onint | ⊢ ( ( { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ≠ ∅ ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) | |
| 31 | 27 29 30 | sylancr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 32 | eleq1 | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) | |
| 33 | 31 32 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ → ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
| 34 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) | |
| 35 | 34 | eleq2d | ⊢ ( 𝑥 = ∅ → ( 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ↑o ∅ ) ) ) |
| 36 | 35 | elrab | ⊢ ( ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( ∅ ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o ∅ ) ) ) |
| 37 | 36 | simprbi | ⊢ ( ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 ∈ ( 𝐴 ↑o ∅ ) ) |
| 38 | eldifi | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) | |
| 39 | 38 | adantr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐴 ∈ On ) |
| 40 | oe0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o ∅ ) = 1o ) |
| 42 | 41 | eleq2d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐵 ∈ ( 𝐴 ↑o ∅ ) ↔ 𝐵 ∈ 1o ) ) |
| 43 | el1o | ⊢ ( 𝐵 ∈ 1o ↔ 𝐵 = ∅ ) | |
| 44 | 42 43 | bitrdi | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐵 ∈ ( 𝐴 ↑o ∅ ) ↔ 𝐵 = ∅ ) ) |
| 45 | 37 44 | imbitrid | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 = ∅ ) ) |
| 46 | 33 45 | syld | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ → 𝐵 = ∅ ) ) |
| 47 | 46 | necon3ad | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐵 ≠ ∅ → ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ) ) |
| 48 | 26 47 | mpd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ) |
| 49 | limuni | ⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) | |
| 50 | 49 1 | eqtr4di | ⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = 𝑋 ) |
| 51 | 50 | adantl | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = 𝑋 ) |
| 52 | 31 | adantr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 53 | 51 52 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 54 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝐴 ↑o 𝑦 ) = ( 𝐴 ↑o 𝑋 ) ) | |
| 55 | 54 | eleq2d | ⊢ ( 𝑦 = 𝑋 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ↔ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 56 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) | |
| 57 | 56 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) ) |
| 58 | 57 | cbvrabv | ⊢ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } |
| 59 | 55 58 | elrab2 | ⊢ ( 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( 𝑋 ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 60 | 59 | simprbi | ⊢ ( 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 61 | 53 60 | syl | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 62 | 38 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝐴 ∈ On ) |
| 63 | limeq | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = 𝑋 → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ Lim 𝑋 ) ) | |
| 64 | 50 63 | syl | ⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ Lim 𝑋 ) ) |
| 65 | 64 | ibi | ⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → Lim 𝑋 ) |
| 66 | 19 65 | anim12i | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ( 𝑋 ∈ On ∧ Lim 𝑋 ) ) |
| 67 | dif20el | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) | |
| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∅ ∈ 𝐴 ) |
| 69 | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑋 ∈ On ∧ Lim 𝑋 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑋 ) = ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ) | |
| 70 | 62 66 68 69 | syl21anc | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ( 𝐴 ↑o 𝑋 ) = ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ) |
| 71 | 61 70 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝐵 ∈ ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ) |
| 72 | eliun | ⊢ ( 𝐵 ∈ ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑋 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) | |
| 73 | 71 72 | sylib | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∃ 𝑦 ∈ 𝑋 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) |
| 74 | 19 | adantr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝑋 ∈ On ) |
| 75 | onss | ⊢ ( 𝑋 ∈ On → 𝑋 ⊆ On ) | |
| 76 | 74 75 | syl | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝑋 ⊆ On ) |
| 77 | 76 | sselda | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ On ) |
| 78 | 51 | eleq2d | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ 𝑦 ∈ 𝑋 ) ) |
| 79 | 78 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 80 | 57 | onnminsb | ⊢ ( 𝑦 ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) ) |
| 81 | 77 79 80 | sylc | ⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ∧ 𝑦 ∈ 𝑋 ) → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) |
| 82 | 81 | nrexdv | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ¬ ∃ 𝑦 ∈ 𝑋 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) |
| 83 | 73 82 | pm2.65da | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 84 | ioran | ⊢ ( ¬ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ↔ ( ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∧ ¬ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) | |
| 85 | 48 83 84 | sylanbrc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
| 86 | eloni | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On → Ord ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) | |
| 87 | unizlim | ⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) ) | |
| 88 | 16 86 87 | 3syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) ) |
| 89 | 85 88 | mtbird | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 90 | orduniorsuc | ⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∨ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) | |
| 91 | 16 86 90 | 3syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∨ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
| 92 | 91 | ord | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
| 93 | 89 92 | mpd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 94 | 23 93 | eqtr4id | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝑋 = ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 95 | 21 94 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 96 | 58 | inteqi | ⊢ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∩ { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } |
| 97 | 95 96 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } ) |
| 98 | 55 | onnminsb | ⊢ ( 𝑋 ∈ On → ( 𝑋 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 99 | 19 97 98 | sylc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 100 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) | |
| 101 | 39 19 100 | syl2anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
| 102 | ontri1 | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) | |
| 103 | 101 3 102 | syl2anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 104 | 99 103 | mpbird | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
| 105 | 94 31 | eqeltrd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
| 106 | oveq2 | ⊢ ( 𝑦 = suc 𝑋 → ( 𝐴 ↑o 𝑦 ) = ( 𝐴 ↑o suc 𝑋 ) ) | |
| 107 | 106 | eleq2d | ⊢ ( 𝑦 = suc 𝑋 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ↔ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
| 108 | 107 58 | elrab2 | ⊢ ( suc 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( suc 𝑋 ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
| 109 | 108 | simprbi | ⊢ ( suc 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
| 110 | 105 109 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
| 111 | 19 104 110 | 3jca | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝑋 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |