This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division algorithm for ordinal exponentiation. (This version of oeeu gives an explicit expression for the unique solution of the equation, in terms of the solution P to omeu .) (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oeeu.1 | |- X = U. |^| { x e. On | B e. ( A ^o x ) } |
|
| oeeu.2 | |- P = ( iota w E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) ) |
||
| oeeu.3 | |- Y = ( 1st ` P ) |
||
| oeeu.4 | |- Z = ( 2nd ` P ) |
||
| Assertion | oeeui | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) /\ E e. ( A ^o C ) ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( C = X /\ D = Y /\ E = Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeeu.1 | |- X = U. |^| { x e. On | B e. ( A ^o x ) } |
|
| 2 | oeeu.2 | |- P = ( iota w E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) ) |
|
| 3 | oeeu.3 | |- Y = ( 1st ` P ) |
|
| 4 | oeeu.4 | |- Z = ( 2nd ` P ) |
|
| 5 | eldifi | |- ( A e. ( On \ 2o ) -> A e. On ) |
|
| 6 | 5 | adantr | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> A e. On ) |
| 7 | 6 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> A e. On ) |
| 8 | simprl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C e. On ) |
|
| 9 | oecl | |- ( ( A e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
|
| 10 | 7 8 9 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) e. On ) |
| 11 | om1 | |- ( ( A ^o C ) e. On -> ( ( A ^o C ) .o 1o ) = ( A ^o C ) ) |
|
| 12 | 10 11 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o 1o ) = ( A ^o C ) ) |
| 13 | df1o2 | |- 1o = { (/) } |
|
| 14 | dif1o | |- ( D e. ( A \ 1o ) <-> ( D e. A /\ D =/= (/) ) ) |
|
| 15 | 14 | simprbi | |- ( D e. ( A \ 1o ) -> D =/= (/) ) |
| 16 | 15 | ad2antll | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> D =/= (/) ) |
| 17 | eldifi | |- ( D e. ( A \ 1o ) -> D e. A ) |
|
| 18 | 17 | ad2antll | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> D e. A ) |
| 19 | onelon | |- ( ( A e. On /\ D e. A ) -> D e. On ) |
|
| 20 | 7 18 19 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> D e. On ) |
| 21 | on0eln0 | |- ( D e. On -> ( (/) e. D <-> D =/= (/) ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( (/) e. D <-> D =/= (/) ) ) |
| 23 | 16 22 | mpbird | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> (/) e. D ) |
| 24 | 23 | snssd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> { (/) } C_ D ) |
| 25 | 13 24 | eqsstrid | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> 1o C_ D ) |
| 26 | 1on | |- 1o e. On |
|
| 27 | 26 | a1i | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> 1o e. On ) |
| 28 | omwordi | |- ( ( 1o e. On /\ D e. On /\ ( A ^o C ) e. On ) -> ( 1o C_ D -> ( ( A ^o C ) .o 1o ) C_ ( ( A ^o C ) .o D ) ) ) |
|
| 29 | 27 20 10 28 | syl3anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( 1o C_ D -> ( ( A ^o C ) .o 1o ) C_ ( ( A ^o C ) .o D ) ) ) |
| 30 | 25 29 | mpd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o 1o ) C_ ( ( A ^o C ) .o D ) ) |
| 31 | 12 30 | eqsstrrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) C_ ( ( A ^o C ) .o D ) ) |
| 32 | omcl | |- ( ( ( A ^o C ) e. On /\ D e. On ) -> ( ( A ^o C ) .o D ) e. On ) |
|
| 33 | 10 20 32 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o D ) e. On ) |
| 34 | simplrl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> E e. ( A ^o C ) ) |
|
| 35 | onelon | |- ( ( ( A ^o C ) e. On /\ E e. ( A ^o C ) ) -> E e. On ) |
|
| 36 | 10 34 35 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> E e. On ) |
| 37 | oaword1 | |- ( ( ( ( A ^o C ) .o D ) e. On /\ E e. On ) -> ( ( A ^o C ) .o D ) C_ ( ( ( A ^o C ) .o D ) +o E ) ) |
|
| 38 | 33 36 37 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o D ) C_ ( ( ( A ^o C ) .o D ) +o E ) ) |
| 39 | simplrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) .o D ) +o E ) = B ) |
|
| 40 | 38 39 | sseqtrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o D ) C_ B ) |
| 41 | 31 40 | sstrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) C_ B ) |
| 42 | 1 | oeeulem | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( X e. On /\ ( A ^o X ) C_ B /\ B e. ( A ^o suc X ) ) ) |
| 43 | 42 | simp3d | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. ( A ^o suc X ) ) |
| 44 | 43 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( A ^o suc X ) ) |
| 45 | 42 | simp1d | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> X e. On ) |
| 46 | 45 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> X e. On ) |
| 47 | onsuc | |- ( X e. On -> suc X e. On ) |
|
| 48 | 46 47 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc X e. On ) |
| 49 | oecl | |- ( ( A e. On /\ suc X e. On ) -> ( A ^o suc X ) e. On ) |
|
| 50 | 7 48 49 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o suc X ) e. On ) |
| 51 | ontr2 | |- ( ( ( A ^o C ) e. On /\ ( A ^o suc X ) e. On ) -> ( ( ( A ^o C ) C_ B /\ B e. ( A ^o suc X ) ) -> ( A ^o C ) e. ( A ^o suc X ) ) ) |
|
| 52 | 10 50 51 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) C_ B /\ B e. ( A ^o suc X ) ) -> ( A ^o C ) e. ( A ^o suc X ) ) ) |
| 53 | 41 44 52 | mp2and | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) e. ( A ^o suc X ) ) |
| 54 | simplll | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> A e. ( On \ 2o ) ) |
|
| 55 | oeord | |- ( ( C e. On /\ suc X e. On /\ A e. ( On \ 2o ) ) -> ( C e. suc X <-> ( A ^o C ) e. ( A ^o suc X ) ) ) |
|
| 56 | 8 48 54 55 | syl3anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( C e. suc X <-> ( A ^o C ) e. ( A ^o suc X ) ) ) |
| 57 | 53 56 | mpbird | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C e. suc X ) |
| 58 | onsssuc | |- ( ( C e. On /\ X e. On ) -> ( C C_ X <-> C e. suc X ) ) |
|
| 59 | 8 46 58 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( C C_ X <-> C e. suc X ) ) |
| 60 | 57 59 | mpbird | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C C_ X ) |
| 61 | 42 | simp2d | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) C_ B ) |
| 62 | 61 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o X ) C_ B ) |
| 63 | eloni | |- ( A e. On -> Ord A ) |
|
| 64 | 7 63 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> Ord A ) |
| 65 | ordsucss | |- ( Ord A -> ( D e. A -> suc D C_ A ) ) |
|
| 66 | 64 18 65 | sylc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc D C_ A ) |
| 67 | onsuc | |- ( D e. On -> suc D e. On ) |
|
| 68 | 20 67 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc D e. On ) |
| 69 | dif20el | |- ( A e. ( On \ 2o ) -> (/) e. A ) |
|
| 70 | 54 69 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> (/) e. A ) |
| 71 | oen0 | |- ( ( ( A e. On /\ C e. On ) /\ (/) e. A ) -> (/) e. ( A ^o C ) ) |
|
| 72 | 7 8 70 71 | syl21anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> (/) e. ( A ^o C ) ) |
| 73 | omword | |- ( ( ( suc D e. On /\ A e. On /\ ( A ^o C ) e. On ) /\ (/) e. ( A ^o C ) ) -> ( suc D C_ A <-> ( ( A ^o C ) .o suc D ) C_ ( ( A ^o C ) .o A ) ) ) |
|
| 74 | 68 7 10 72 73 | syl31anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( suc D C_ A <-> ( ( A ^o C ) .o suc D ) C_ ( ( A ^o C ) .o A ) ) ) |
| 75 | 66 74 | mpbid | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o suc D ) C_ ( ( A ^o C ) .o A ) ) |
| 76 | oaord | |- ( ( E e. On /\ ( A ^o C ) e. On /\ ( ( A ^o C ) .o D ) e. On ) -> ( E e. ( A ^o C ) <-> ( ( ( A ^o C ) .o D ) +o E ) e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) ) |
|
| 77 | 36 10 33 76 | syl3anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( E e. ( A ^o C ) <-> ( ( ( A ^o C ) .o D ) +o E ) e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) ) |
| 78 | 34 77 | mpbid | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) .o D ) +o E ) e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 79 | 39 78 | eqeltrrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 80 | odi | |- ( ( ( A ^o C ) e. On /\ D e. On /\ 1o e. On ) -> ( ( A ^o C ) .o ( D +o 1o ) ) = ( ( ( A ^o C ) .o D ) +o ( ( A ^o C ) .o 1o ) ) ) |
|
| 81 | 10 20 27 80 | syl3anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o ( D +o 1o ) ) = ( ( ( A ^o C ) .o D ) +o ( ( A ^o C ) .o 1o ) ) ) |
| 82 | oa1suc | |- ( D e. On -> ( D +o 1o ) = suc D ) |
|
| 83 | 20 82 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( D +o 1o ) = suc D ) |
| 84 | 83 | oveq2d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o ( D +o 1o ) ) = ( ( A ^o C ) .o suc D ) ) |
| 85 | 12 | oveq2d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) .o D ) +o ( ( A ^o C ) .o 1o ) ) = ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 86 | 81 84 85 | 3eqtr3d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o suc D ) = ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 87 | 79 86 | eleqtrrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( ( A ^o C ) .o suc D ) ) |
| 88 | 75 87 | sseldd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( ( A ^o C ) .o A ) ) |
| 89 | oesuc | |- ( ( A e. On /\ C e. On ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
|
| 90 | 7 8 89 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
| 91 | 88 90 | eleqtrrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( A ^o suc C ) ) |
| 92 | oecl | |- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
|
| 93 | 7 46 92 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o X ) e. On ) |
| 94 | onsuc | |- ( C e. On -> suc C e. On ) |
|
| 95 | 94 | ad2antrl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc C e. On ) |
| 96 | oecl | |- ( ( A e. On /\ suc C e. On ) -> ( A ^o suc C ) e. On ) |
|
| 97 | 7 95 96 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o suc C ) e. On ) |
| 98 | ontr2 | |- ( ( ( A ^o X ) e. On /\ ( A ^o suc C ) e. On ) -> ( ( ( A ^o X ) C_ B /\ B e. ( A ^o suc C ) ) -> ( A ^o X ) e. ( A ^o suc C ) ) ) |
|
| 99 | 93 97 98 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o X ) C_ B /\ B e. ( A ^o suc C ) ) -> ( A ^o X ) e. ( A ^o suc C ) ) ) |
| 100 | 62 91 99 | mp2and | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o X ) e. ( A ^o suc C ) ) |
| 101 | oeord | |- ( ( X e. On /\ suc C e. On /\ A e. ( On \ 2o ) ) -> ( X e. suc C <-> ( A ^o X ) e. ( A ^o suc C ) ) ) |
|
| 102 | 46 95 54 101 | syl3anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( X e. suc C <-> ( A ^o X ) e. ( A ^o suc C ) ) ) |
| 103 | 100 102 | mpbird | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> X e. suc C ) |
| 104 | onsssuc | |- ( ( X e. On /\ C e. On ) -> ( X C_ C <-> X e. suc C ) ) |
|
| 105 | 46 8 104 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( X C_ C <-> X e. suc C ) ) |
| 106 | 103 105 | mpbird | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> X C_ C ) |
| 107 | 60 106 | eqssd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C = X ) |
| 108 | 107 20 | jca | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( C = X /\ D e. On ) ) |
| 109 | simprl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> C = X ) |
|
| 110 | 45 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> X e. On ) |
| 111 | 109 110 | eqeltrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> C e. On ) |
| 112 | 6 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> A e. On ) |
| 113 | 112 111 9 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o C ) e. On ) |
| 114 | simprr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D e. On ) |
|
| 115 | 113 114 32 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) e. On ) |
| 116 | simplrl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> E e. ( A ^o C ) ) |
|
| 117 | 113 116 35 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> E e. On ) |
| 118 | 115 117 37 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) C_ ( ( ( A ^o C ) .o D ) +o E ) ) |
| 119 | simplrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o D ) +o E ) = B ) |
|
| 120 | 118 119 | sseqtrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) C_ B ) |
| 121 | 43 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> B e. ( A ^o suc X ) ) |
| 122 | suceq | |- ( C = X -> suc C = suc X ) |
|
| 123 | 122 | ad2antrl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> suc C = suc X ) |
| 124 | 123 | oveq2d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o suc C ) = ( A ^o suc X ) ) |
| 125 | 112 111 89 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
| 126 | 124 125 | eqtr3d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o suc X ) = ( ( A ^o C ) .o A ) ) |
| 127 | 121 126 | eleqtrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> B e. ( ( A ^o C ) .o A ) ) |
| 128 | omcl | |- ( ( ( A ^o C ) e. On /\ A e. On ) -> ( ( A ^o C ) .o A ) e. On ) |
|
| 129 | 113 112 128 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o A ) e. On ) |
| 130 | ontr2 | |- ( ( ( ( A ^o C ) .o D ) e. On /\ ( ( A ^o C ) .o A ) e. On ) -> ( ( ( ( A ^o C ) .o D ) C_ B /\ B e. ( ( A ^o C ) .o A ) ) -> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
|
| 131 | 115 129 130 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( ( A ^o C ) .o D ) C_ B /\ B e. ( ( A ^o C ) .o A ) ) -> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
| 132 | 120 127 131 | mp2and | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) |
| 133 | 69 | adantr | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> (/) e. A ) |
| 134 | 133 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> (/) e. A ) |
| 135 | 112 111 134 71 | syl21anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> (/) e. ( A ^o C ) ) |
| 136 | omord2 | |- ( ( ( D e. On /\ A e. On /\ ( A ^o C ) e. On ) /\ (/) e. ( A ^o C ) ) -> ( D e. A <-> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
|
| 137 | 114 112 113 135 136 | syl31anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( D e. A <-> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
| 138 | 132 137 | mpbird | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D e. A ) |
| 139 | 109 | oveq2d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o C ) = ( A ^o X ) ) |
| 140 | 61 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o X ) C_ B ) |
| 141 | 139 140 | eqsstrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o C ) C_ B ) |
| 142 | eldifi | |- ( B e. ( On \ 1o ) -> B e. On ) |
|
| 143 | 142 | adantl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. On ) |
| 144 | 143 | ad2antrr | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> B e. On ) |
| 145 | ontri1 | |- ( ( ( A ^o C ) e. On /\ B e. On ) -> ( ( A ^o C ) C_ B <-> -. B e. ( A ^o C ) ) ) |
|
| 146 | 113 144 145 | syl2anc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) C_ B <-> -. B e. ( A ^o C ) ) ) |
| 147 | 141 146 | mpbid | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> -. B e. ( A ^o C ) ) |
| 148 | om0 | |- ( ( A ^o C ) e. On -> ( ( A ^o C ) .o (/) ) = (/) ) |
|
| 149 | 113 148 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o (/) ) = (/) ) |
| 150 | 149 | oveq1d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o (/) ) +o E ) = ( (/) +o E ) ) |
| 151 | oa0r | |- ( E e. On -> ( (/) +o E ) = E ) |
|
| 152 | 117 151 | syl | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( (/) +o E ) = E ) |
| 153 | 150 152 | eqtrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o (/) ) +o E ) = E ) |
| 154 | 153 116 | eqeltrd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o (/) ) +o E ) e. ( A ^o C ) ) |
| 155 | oveq2 | |- ( D = (/) -> ( ( A ^o C ) .o D ) = ( ( A ^o C ) .o (/) ) ) |
|
| 156 | 155 | oveq1d | |- ( D = (/) -> ( ( ( A ^o C ) .o D ) +o E ) = ( ( ( A ^o C ) .o (/) ) +o E ) ) |
| 157 | 156 | eleq1d | |- ( D = (/) -> ( ( ( ( A ^o C ) .o D ) +o E ) e. ( A ^o C ) <-> ( ( ( A ^o C ) .o (/) ) +o E ) e. ( A ^o C ) ) ) |
| 158 | 154 157 | syl5ibrcom | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( D = (/) -> ( ( ( A ^o C ) .o D ) +o E ) e. ( A ^o C ) ) ) |
| 159 | 119 | eleq1d | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( ( A ^o C ) .o D ) +o E ) e. ( A ^o C ) <-> B e. ( A ^o C ) ) ) |
| 160 | 158 159 | sylibd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( D = (/) -> B e. ( A ^o C ) ) ) |
| 161 | 160 | necon3bd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( -. B e. ( A ^o C ) -> D =/= (/) ) ) |
| 162 | 147 161 | mpd | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D =/= (/) ) |
| 163 | 138 162 14 | sylanbrc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D e. ( A \ 1o ) ) |
| 164 | 111 163 | jca | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( C e. On /\ D e. ( A \ 1o ) ) ) |
| 165 | 108 164 | impbida | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) -> ( ( C e. On /\ D e. ( A \ 1o ) ) <-> ( C = X /\ D e. On ) ) ) |
| 166 | 165 | ex | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) -> ( ( C e. On /\ D e. ( A \ 1o ) ) <-> ( C = X /\ D e. On ) ) ) ) |
| 167 | 166 | pm5.32rd | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( ( C = X /\ D e. On ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) ) |
| 168 | anass | |- ( ( ( C = X /\ D e. On ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( C = X /\ ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) ) |
|
| 169 | 167 168 | bitrdi | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( C = X /\ ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) ) ) |
| 170 | 3anass | |- ( ( D e. On /\ E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) |
|
| 171 | oveq2 | |- ( C = X -> ( A ^o C ) = ( A ^o X ) ) |
|
| 172 | 171 | eleq2d | |- ( C = X -> ( E e. ( A ^o C ) <-> E e. ( A ^o X ) ) ) |
| 173 | 171 | oveq1d | |- ( C = X -> ( ( A ^o C ) .o D ) = ( ( A ^o X ) .o D ) ) |
| 174 | 173 | oveq1d | |- ( C = X -> ( ( ( A ^o C ) .o D ) +o E ) = ( ( ( A ^o X ) .o D ) +o E ) ) |
| 175 | 174 | eqeq1d | |- ( C = X -> ( ( ( ( A ^o C ) .o D ) +o E ) = B <-> ( ( ( A ^o X ) .o D ) +o E ) = B ) ) |
| 176 | 172 175 | 3anbi23d | |- ( C = X -> ( ( D e. On /\ E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) ) ) |
| 177 | 170 176 | bitr3id | |- ( C = X -> ( ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) ) ) |
| 178 | 6 45 92 | syl2anc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) e. On ) |
| 179 | oen0 | |- ( ( ( A e. On /\ X e. On ) /\ (/) e. A ) -> (/) e. ( A ^o X ) ) |
|
| 180 | 6 45 133 179 | syl21anc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> (/) e. ( A ^o X ) ) |
| 181 | 180 | ne0d | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) =/= (/) ) |
| 182 | omeu | |- ( ( ( A ^o X ) e. On /\ B e. On /\ ( A ^o X ) =/= (/) ) -> E! a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
|
| 183 | opeq1 | |- ( y = d -> <. y , z >. = <. d , z >. ) |
|
| 184 | 183 | eqeq2d | |- ( y = d -> ( w = <. y , z >. <-> w = <. d , z >. ) ) |
| 185 | oveq2 | |- ( y = d -> ( ( A ^o X ) .o y ) = ( ( A ^o X ) .o d ) ) |
|
| 186 | 185 | oveq1d | |- ( y = d -> ( ( ( A ^o X ) .o y ) +o z ) = ( ( ( A ^o X ) .o d ) +o z ) ) |
| 187 | 186 | eqeq1d | |- ( y = d -> ( ( ( ( A ^o X ) .o y ) +o z ) = B <-> ( ( ( A ^o X ) .o d ) +o z ) = B ) ) |
| 188 | 184 187 | anbi12d | |- ( y = d -> ( ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) <-> ( w = <. d , z >. /\ ( ( ( A ^o X ) .o d ) +o z ) = B ) ) ) |
| 189 | opeq2 | |- ( z = e -> <. d , z >. = <. d , e >. ) |
|
| 190 | 189 | eqeq2d | |- ( z = e -> ( w = <. d , z >. <-> w = <. d , e >. ) ) |
| 191 | oveq2 | |- ( z = e -> ( ( ( A ^o X ) .o d ) +o z ) = ( ( ( A ^o X ) .o d ) +o e ) ) |
|
| 192 | 191 | eqeq1d | |- ( z = e -> ( ( ( ( A ^o X ) .o d ) +o z ) = B <-> ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 193 | 190 192 | anbi12d | |- ( z = e -> ( ( w = <. d , z >. /\ ( ( ( A ^o X ) .o d ) +o z ) = B ) <-> ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 194 | 188 193 | cbvrex2vw | |- ( E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) <-> E. d e. On E. e e. ( A ^o X ) ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 195 | eqeq1 | |- ( w = a -> ( w = <. d , e >. <-> a = <. d , e >. ) ) |
|
| 196 | 195 | anbi1d | |- ( w = a -> ( ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) <-> ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 197 | 196 | 2rexbidv | |- ( w = a -> ( E. d e. On E. e e. ( A ^o X ) ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) <-> E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 198 | 194 197 | bitrid | |- ( w = a -> ( E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) <-> E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 199 | 198 | cbviotavw | |- ( iota w E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) ) = ( iota a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 200 | 2 199 | eqtri | |- P = ( iota a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 201 | oveq2 | |- ( d = D -> ( ( A ^o X ) .o d ) = ( ( A ^o X ) .o D ) ) |
|
| 202 | 201 | oveq1d | |- ( d = D -> ( ( ( A ^o X ) .o d ) +o e ) = ( ( ( A ^o X ) .o D ) +o e ) ) |
| 203 | 202 | eqeq1d | |- ( d = D -> ( ( ( ( A ^o X ) .o d ) +o e ) = B <-> ( ( ( A ^o X ) .o D ) +o e ) = B ) ) |
| 204 | oveq2 | |- ( e = E -> ( ( ( A ^o X ) .o D ) +o e ) = ( ( ( A ^o X ) .o D ) +o E ) ) |
|
| 205 | 204 | eqeq1d | |- ( e = E -> ( ( ( ( A ^o X ) .o D ) +o e ) = B <-> ( ( ( A ^o X ) .o D ) +o E ) = B ) ) |
| 206 | 200 3 4 203 205 | opiota | |- ( E! a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) -> ( ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) <-> ( D = Y /\ E = Z ) ) ) |
| 207 | 182 206 | syl | |- ( ( ( A ^o X ) e. On /\ B e. On /\ ( A ^o X ) =/= (/) ) -> ( ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) <-> ( D = Y /\ E = Z ) ) ) |
| 208 | 178 143 181 207 | syl3anc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) <-> ( D = Y /\ E = Z ) ) ) |
| 209 | 177 208 | sylan9bbr | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ C = X ) -> ( ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( D = Y /\ E = Z ) ) ) |
| 210 | 209 | pm5.32da | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( C = X /\ ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) <-> ( C = X /\ ( D = Y /\ E = Z ) ) ) ) |
| 211 | 169 210 | bitrd | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( C = X /\ ( D = Y /\ E = Z ) ) ) ) |
| 212 | 3an4anass | |- ( ( ( C e. On /\ D e. ( A \ 1o ) /\ E e. ( A ^o C ) ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) |
|
| 213 | 3anass | |- ( ( C = X /\ D = Y /\ E = Z ) <-> ( C = X /\ ( D = Y /\ E = Z ) ) ) |
|
| 214 | 211 212 213 | 3bitr4g | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) /\ E e. ( A ^o C ) ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( C = X /\ D = Y /\ E = Z ) ) ) |