This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeeu | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } = ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } | |
| 2 | 1 | oeeulem | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ∈ On ∧ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ) ) |
| 3 | 2 | simp1d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ∈ On ) |
| 4 | fvexd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ∈ V ) | |
| 5 | fvexd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ∈ V ) | |
| 6 | eqid | ⊢ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) = ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) | |
| 7 | eqid | ⊢ ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) = ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) | |
| 8 | eqid | ⊢ ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) = ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) | |
| 9 | 1 6 7 8 | oeeui | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ( 𝑥 = ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ∧ 𝑦 = ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ∧ 𝑧 = ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ) ) ) |
| 10 | 3 4 5 9 | euotd | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∃! 𝑤 ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
| 11 | df-3an | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ) | |
| 12 | 11 | biancomi | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ) |
| 13 | 12 | anbi1i | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
| 14 | 13 | anbi2i | ⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
| 15 | an12 | ⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) | |
| 16 | anass | ⊢ ( ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) | |
| 17 | 14 15 16 | 3bitri | ⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) |
| 19 | df-rex | ⊢ ( ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) | |
| 20 | r19.42v | ⊢ ( ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) | |
| 21 | 18 19 20 | 3bitr2i | ⊢ ( ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
| 22 | 21 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
| 23 | r2ex | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) | |
| 24 | 22 23 | bitr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
| 25 | 24 | eubii | ⊢ ( ∃! 𝑤 ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
| 26 | 10 25 | sylib | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |