This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with a nonzero base is nonzero. Proposition 8.32 of TakeutiZaring p. 67. (Contributed by NM, 4-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oen0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑥 = ∅ → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o ∅ ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) | |
| 4 | 3 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) | |
| 6 | 5 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) | |
| 8 | 7 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 9 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 10 | oe0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) | |
| 11 | 9 10 | eleqtrrid | ⊢ ( 𝐴 ∈ On → ∅ ∈ ( 𝐴 ↑o ∅ ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o ∅ ) ) |
| 13 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) | |
| 14 | omordi | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) | |
| 15 | om0 | ⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) = ∅ ) | |
| 16 | 15 | eleq1d | ⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 18 | 14 17 | sylibd | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 19 | 13 18 | syldanl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 20 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) | |
| 21 | 20 | eleq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 23 | 19 22 | sylibrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 24 | 23 | exp31 | ⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ On → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) ) |
| 25 | 24 | com12 | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) ) |
| 26 | 25 | com34 | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) ) |
| 27 | 26 | impd | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 28 | 0ellim | ⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) | |
| 29 | eqimss2 | ⊢ ( ( 𝐴 ↑o ∅ ) = 1o → 1o ⊆ ( 𝐴 ↑o ∅ ) ) | |
| 30 | 10 29 | syl | ⊢ ( 𝐴 ∈ On → 1o ⊆ ( 𝐴 ↑o ∅ ) ) |
| 31 | oveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐴 ↑o 𝑦 ) = ( 𝐴 ↑o ∅ ) ) | |
| 32 | 31 | sseq2d | ⊢ ( 𝑦 = ∅ → ( 1o ⊆ ( 𝐴 ↑o 𝑦 ) ↔ 1o ⊆ ( 𝐴 ↑o ∅ ) ) ) |
| 33 | 32 | rspcev | ⊢ ( ( ∅ ∈ 𝑥 ∧ 1o ⊆ ( 𝐴 ↑o ∅ ) ) → ∃ 𝑦 ∈ 𝑥 1o ⊆ ( 𝐴 ↑o 𝑦 ) ) |
| 34 | 28 30 33 | syl2an | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ∃ 𝑦 ∈ 𝑥 1o ⊆ ( 𝐴 ↑o 𝑦 ) ) |
| 35 | ssiun | ⊢ ( ∃ 𝑦 ∈ 𝑥 1o ⊆ ( 𝐴 ↑o 𝑦 ) → 1o ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → 1o ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 37 | 36 | adantrr | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → 1o ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 38 | vex | ⊢ 𝑥 ∈ V | |
| 39 | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) | |
| 40 | 38 39 | mpanlr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 41 | 40 | anasss | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 42 | 41 | an12s | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 43 | 37 42 | sseqtrrd | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) |
| 44 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 45 | 38 44 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 46 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) | |
| 47 | 46 | ancoms | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
| 48 | 45 47 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
| 49 | eloni | ⊢ ( ( 𝐴 ↑o 𝑥 ) ∈ On → Ord ( 𝐴 ↑o 𝑥 ) ) | |
| 50 | ordgt0ge1 | ⊢ ( Ord ( 𝐴 ↑o 𝑥 ) → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) ) | |
| 51 | 48 49 50 | 3syl | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 52 | 51 | adantrr | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 53 | 43 52 | mpbird | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ∅ ∈ ( 𝐴 ↑o 𝑥 ) ) |
| 54 | 53 | ex | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝑥 ) ) ) |
| 55 | 54 | a1dd | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ∅ ∈ ( 𝐴 ↑o 𝑥 ) ) ) ) |
| 56 | 2 4 6 8 12 27 55 | tfinds3 | ⊢ ( 𝐵 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 57 | 56 | expd | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 58 | 57 | com12 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 59 | 58 | imp31 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |