This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omeu | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃! 𝑧 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omeulem1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) | |
| 2 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
| 3 | 2 | isseti | ⊢ ∃ 𝑧 𝑧 = 〈 𝑥 , 𝑦 〉 |
| 4 | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( ∃ 𝑧 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) | |
| 5 | 3 4 | mpbiran | ⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
| 6 | 5 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
| 7 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) | |
| 8 | 6 7 | bitr3i | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ∃ 𝑧 ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ∃ 𝑥 ∈ On ∃ 𝑧 ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 10 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑧 ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ∃ 𝑧 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 12 | 1 11 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 13 | simp2rl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑧 = 〈 𝑥 , 𝑦 〉 ) | |
| 14 | simp3rl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑡 = 〈 𝑟 , 𝑠 〉 ) | |
| 15 | simp2rr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) | |
| 16 | simp3rr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) | |
| 17 | 15 16 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) ) |
| 18 | simp11 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝐴 ∈ On ) | |
| 19 | simp13 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝐴 ≠ ∅ ) | |
| 20 | simp2ll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑥 ∈ On ) | |
| 21 | simp2lr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 22 | simp3ll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑟 ∈ On ) | |
| 23 | simp3lr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑠 ∈ 𝐴 ) | |
| 24 | omopth2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ) → ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) ↔ ( 𝑥 = 𝑟 ∧ 𝑦 = 𝑠 ) ) ) | |
| 25 | 18 19 20 21 22 23 24 | syl222anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) ↔ ( 𝑥 = 𝑟 ∧ 𝑦 = 𝑠 ) ) ) |
| 26 | 17 25 | mpbid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( 𝑥 = 𝑟 ∧ 𝑦 = 𝑠 ) ) |
| 27 | opeq12 | ⊢ ( ( 𝑥 = 𝑟 ∧ 𝑦 = 𝑠 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑟 , 𝑠 〉 ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑟 , 𝑠 〉 ) |
| 29 | 14 28 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑡 = 〈 𝑥 , 𝑦 〉 ) |
| 30 | 13 29 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑧 = 𝑡 ) |
| 31 | 30 | 3expia | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) → ( ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) ) |
| 32 | 31 | exp4b | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) ) ) |
| 33 | 32 | expd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) → ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) ) ) ) |
| 34 | 33 | rexlimdvv | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) → ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) ) ) |
| 35 | 34 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝑟 ∈ On ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) ) |
| 36 | 35 | rexlimdvv | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) |
| 37 | 36 | expimpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) ) |
| 38 | 37 | alrimivv | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧 ∀ 𝑡 ( ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) ) |
| 39 | opeq1 | ⊢ ( 𝑥 = 𝑟 → 〈 𝑥 , 𝑦 〉 = 〈 𝑟 , 𝑦 〉 ) | |
| 40 | 39 | eqeq2d | ⊢ ( 𝑥 = 𝑟 → ( 𝑧 = 〈 𝑥 , 𝑦 〉 ↔ 𝑧 = 〈 𝑟 , 𝑦 〉 ) ) |
| 41 | oveq2 | ⊢ ( 𝑥 = 𝑟 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑟 ) ) | |
| 42 | 41 | oveq1d | ⊢ ( 𝑥 = 𝑟 → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) ) |
| 43 | 42 | eqeq1d | ⊢ ( 𝑥 = 𝑟 → ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ) ) |
| 44 | 40 43 | anbi12d | ⊢ ( 𝑥 = 𝑟 → ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( 𝑧 = 〈 𝑟 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ) ) ) |
| 45 | opeq2 | ⊢ ( 𝑦 = 𝑠 → 〈 𝑟 , 𝑦 〉 = 〈 𝑟 , 𝑠 〉 ) | |
| 46 | 45 | eqeq2d | ⊢ ( 𝑦 = 𝑠 → ( 𝑧 = 〈 𝑟 , 𝑦 〉 ↔ 𝑧 = 〈 𝑟 , 𝑠 〉 ) ) |
| 47 | oveq2 | ⊢ ( 𝑦 = 𝑠 → ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) ) | |
| 48 | 47 | eqeq1d | ⊢ ( 𝑦 = 𝑠 → ( ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ↔ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) |
| 49 | 46 48 | anbi12d | ⊢ ( 𝑦 = 𝑠 → ( ( 𝑧 = 〈 𝑟 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ) ↔ ( 𝑧 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) |
| 50 | 44 49 | cbvrex2vw | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑧 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) |
| 51 | eqeq1 | ⊢ ( 𝑧 = 𝑡 → ( 𝑧 = 〈 𝑟 , 𝑠 〉 ↔ 𝑡 = 〈 𝑟 , 𝑠 〉 ) ) | |
| 52 | 51 | anbi1d | ⊢ ( 𝑧 = 𝑡 → ( ( 𝑧 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ↔ ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) |
| 53 | 52 | 2rexbidv | ⊢ ( 𝑧 = 𝑡 → ( ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑧 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ↔ ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) |
| 54 | 50 53 | bitrid | ⊢ ( 𝑧 = 𝑡 → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) |
| 55 | 54 | eu4 | ⊢ ( ∃! 𝑧 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( ∃ 𝑧 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∀ 𝑧 ∀ 𝑡 ( ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∃ 𝑟 ∈ On ∃ 𝑠 ∈ 𝐴 ( 𝑡 = 〈 𝑟 , 𝑠 〉 ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) ) ) |
| 56 | 12 38 55 | sylanbrc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃! 𝑧 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |