This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal addition. Proposition 8.4 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaordi | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) | |
| 2 | 1 | adantll | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
| 3 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 4 | ordsucss | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 7 | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = suc 𝐴 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o suc 𝐴 ) ) | |
| 9 | 8 | sseq2d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o 𝑦 ) ) | |
| 12 | 11 | sseq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o suc 𝑦 ) ) | |
| 15 | 14 | sseq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o 𝐵 ) ) | |
| 18 | 17 | sseq2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) |
| 20 | ssid | ⊢ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) | |
| 21 | 20 | 2a1i | ⊢ ( suc 𝐴 ∈ On → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) |
| 22 | sssucid | ⊢ ( 𝐶 +o 𝑦 ) ⊆ suc ( 𝐶 +o 𝑦 ) | |
| 23 | sstr2 | ⊢ ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( ( 𝐶 +o 𝑦 ) ⊆ suc ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) ) | |
| 24 | 22 23 | mpi | ⊢ ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) |
| 25 | oasuc | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 +o suc 𝑦 ) = suc ( 𝐶 +o 𝑦 ) ) | |
| 26 | 25 | ancoms | ⊢ ( ( 𝑦 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o suc 𝑦 ) = suc ( 𝐶 +o 𝑦 ) ) |
| 27 | 26 | sseq2d | ⊢ ( ( 𝑦 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) ) |
| 28 | 24 27 | imbitrrid | ⊢ ( ( 𝑦 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) |
| 29 | 28 | ex | ⊢ ( 𝑦 ∈ On → ( 𝐶 ∈ On → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑦 ) → ( 𝐶 ∈ On → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 31 | 30 | a2d | ⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑦 ) → ( ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 32 | sucssel | ⊢ ( 𝐴 ∈ On → ( suc 𝐴 ⊆ 𝑥 → 𝐴 ∈ 𝑥 ) ) | |
| 33 | 7 32 | sylbir | ⊢ ( suc 𝐴 ∈ On → ( suc 𝐴 ⊆ 𝑥 → 𝐴 ∈ 𝑥 ) ) |
| 34 | limsuc | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) | |
| 35 | 34 | biimpd | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → suc 𝐴 ∈ 𝑥 ) ) |
| 36 | 33 35 | sylan9r | ⊢ ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) → ( suc 𝐴 ⊆ 𝑥 → suc 𝐴 ∈ 𝑥 ) ) |
| 37 | 36 | imp | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) → suc 𝐴 ∈ 𝑥 ) |
| 38 | oveq2 | ⊢ ( 𝑦 = suc 𝐴 → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o suc 𝐴 ) ) | |
| 39 | 38 | ssiun2s | ⊢ ( suc 𝐴 ∈ 𝑥 → ( 𝐶 +o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) |
| 40 | 37 39 | syl | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) ∧ 𝐶 ∈ On ) → ( 𝐶 +o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) |
| 42 | vex | ⊢ 𝑥 ∈ V | |
| 43 | oalim | ⊢ ( ( 𝐶 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐶 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) | |
| 44 | 42 43 | mpanr1 | ⊢ ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) → ( 𝐶 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) |
| 45 | 44 | ancoms | ⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) |
| 46 | 45 | adantlr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) |
| 47 | 46 | adantlr | ⊢ ( ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 +o 𝑦 ) ) |
| 48 | 41 47 | sseqtrrd | ⊢ ( ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) ∧ 𝐶 ∈ On ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) |
| 49 | 48 | ex | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ) |
| 50 | 49 | a1d | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐴 ⊆ 𝑦 → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) ) → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ) ) |
| 51 | 10 13 16 19 21 31 50 | tfindsg | ⊢ ( ( ( 𝐵 ∈ On ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 52 | 51 | exp31 | ⊢ ( 𝐵 ∈ On → ( suc 𝐴 ∈ On → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
| 53 | 7 52 | biimtrid | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ On → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
| 54 | 53 | com4r | ⊢ ( 𝐶 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
| 55 | 54 | imp31 | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 56 | oasuc | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 +o suc 𝐴 ) = suc ( 𝐶 +o 𝐴 ) ) | |
| 57 | 56 | sseq1d | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 58 | ovex | ⊢ ( 𝐶 +o 𝐴 ) ∈ V | |
| 59 | sucssel | ⊢ ( ( 𝐶 +o 𝐴 ) ∈ V → ( suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) | |
| 60 | 58 59 | ax-mp | ⊢ ( suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 61 | 57 60 | biimtrdi | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 62 | 61 | adantlr | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 63 | 6 55 62 | 3syld | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 65 | 64 | an32s | ⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 66 | 2 65 | mpdan | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 67 | 66 | ex | ⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 68 | 67 | ancoms | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |