This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995) (Proof shortened by Wolf Lammen, 26-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3an2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| syl3an2.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | syl3an2 | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| 2 | syl3an2.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 1 | 3anim2i | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜃 ) → ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
| 4 | 3 2 | syl | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜃 ) → 𝜏 ) |