This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition with successor. Definition 8.1 of TakeutiZaring p. 56. Definition 2.3 of Schloeder p. 4. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsuc | ⊢ ( 𝐵 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 3 | onsuc | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) | |
| 4 | oav | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 6 | ovex | ⊢ ( 𝐴 +o 𝐵 ) ∈ V | |
| 7 | suceq | ⊢ ( 𝑥 = ( 𝐴 +o 𝐵 ) → suc 𝑥 = suc ( 𝐴 +o 𝐵 ) ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ V ↦ suc 𝑥 ) = ( 𝑥 ∈ V ↦ suc 𝑥 ) | |
| 9 | 6 | sucex | ⊢ suc ( 𝐴 +o 𝐵 ) ∈ V |
| 10 | 7 8 9 | fvmpt | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) ) |
| 11 | 6 10 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) |
| 12 | oav | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 14 | 11 13 | eqtr3id | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴 +o 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 15 | 2 5 14 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |