This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om00el | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om00 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) | |
| 2 | 1 | necon3abid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ≠ ∅ ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
| 3 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 4 | on0eln0 | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
| 6 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 7 | on0eln0 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 8 | 6 7 | bi2anan9 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ↔ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) ) |
| 9 | neanior | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
| 11 | 2 5 10 | 3bitr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) ) |