This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of TakeutiZaring p. 65. Theorem 4.4 of Schloeder p. 13. (Contributed by NM, 28-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omass | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐶 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 17 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 18 | om0 | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ∅ ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ∅ ) |
| 20 | om0 | ⊢ ( 𝐵 ∈ On → ( 𝐵 ·o ∅ ) = ∅ ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝐵 ∈ On → ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) = ( 𝐴 ·o ∅ ) ) |
| 22 | om0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 23 | 21 22 | sylan9eqr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) = ∅ ) |
| 24 | 19 23 | eqtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) |
| 25 | oveq1 | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) | |
| 26 | omsuc | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) ) | |
| 27 | 17 26 | stoic3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 28 | omsuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) | |
| 29 | 28 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) = ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
| 31 | omcl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) | |
| 32 | odi | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) | |
| 33 | 31 32 | syl3an2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 34 | 33 | 3exp | ⊢ ( 𝐴 ∈ On → ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) |
| 35 | 34 | expd | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) ) |
| 36 | 35 | com34 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) ) |
| 37 | 36 | pm2.43d | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) |
| 38 | 37 | 3imp | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 39 | 30 38 | eqtrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 40 | 27 39 | eqeq12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ↔ ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) |
| 41 | 25 40 | imbitrrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 42 | 41 | 3exp | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
| 43 | 42 | com3r | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
| 44 | 43 | impd | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) |
| 45 | 17 | ancoms | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 46 | vex | ⊢ 𝑥 ∈ V | |
| 47 | omlim | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) | |
| 48 | 46 47 | mpanr1 | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
| 49 | 45 48 | sylan | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
| 50 | 49 | an32s | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
| 51 | 50 | ad2antrr | ⊢ ( ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
| 52 | iuneq2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) | |
| 53 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 54 | 46 53 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 55 | 54 | anim1i | ⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) |
| 56 | 55 | ancoms | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) |
| 57 | omordi | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 𝑦 ∈ 𝑥 → ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) ) ) | |
| 58 | 56 57 | sylan | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ( 𝑦 ∈ 𝑥 → ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) ) ) |
| 59 | ssid | ⊢ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) | |
| 60 | oveq2 | ⊢ ( 𝑧 = ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) | |
| 61 | 60 | sseq2d | ⊢ ( 𝑧 = ( 𝐵 ·o 𝑦 ) → ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ↔ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 62 | 61 | rspcev | ⊢ ( ( ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) ∧ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
| 63 | 59 62 | mpan2 | ⊢ ( ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
| 64 | 58 63 | syl6 | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
| 65 | 64 | ralrimiv | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
| 66 | iunss2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 68 | 67 | adantlr | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 69 | omcl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 ·o 𝑥 ) ∈ On ) | |
| 70 | 54 69 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐵 ·o 𝑥 ) ∈ On ) |
| 71 | onelon | ⊢ ( ( ( 𝐵 ·o 𝑥 ) ∈ On ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → 𝑧 ∈ On ) | |
| 72 | 70 71 | sylan | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → 𝑧 ∈ On ) |
| 73 | 72 | adantlr | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → 𝑧 ∈ On ) |
| 74 | omordlim | ⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) | |
| 75 | 74 | ex | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) ) |
| 76 | 46 75 | mpanr1 | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) ) |
| 77 | 76 | ad2antlr | ⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) ) |
| 78 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 79 | 54 78 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
| 80 | 79 31 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
| 81 | onelss | ⊢ ( ( 𝐵 ·o 𝑦 ) ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → 𝑧 ⊆ ( 𝐵 ·o 𝑦 ) ) ) | |
| 82 | 81 | 3ad2ant2 | ⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → 𝑧 ⊆ ( 𝐵 ·o 𝑦 ) ) ) |
| 83 | omwordi | ⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) | |
| 84 | 82 83 | syld | ⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 85 | 84 | 3exp | ⊢ ( 𝑧 ∈ On → ( ( 𝐵 ·o 𝑦 ) ∈ On → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
| 86 | 80 85 | syl5 | ⊢ ( 𝑧 ∈ On → ( ( 𝐵 ∈ On ∧ ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
| 87 | 86 | exp4d | ⊢ ( 𝑧 ∈ On → ( 𝐵 ∈ On → ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) ) ) |
| 88 | 87 | imp32 | ⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
| 89 | 88 | com23 | ⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) → ( 𝐴 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
| 90 | 89 | imp | ⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ 𝑥 → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) |
| 91 | 90 | reximdvai | ⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 92 | 77 91 | syld | ⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 93 | 92 | exp31 | ⊢ ( 𝑧 ∈ On → ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
| 94 | 93 | imp4c | ⊢ ( 𝑧 ∈ On → ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 95 | 73 94 | mpcom | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
| 96 | 95 | ralrimiva | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ∀ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
| 97 | iunss2 | ⊢ ( ∀ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) | |
| 98 | 96 97 | syl | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
| 99 | 98 | adantr | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
| 100 | 68 99 | eqssd | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 101 | omlimcl | ⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐵 ) → Lim ( 𝐵 ·o 𝑥 ) ) | |
| 102 | 46 101 | mpanlr1 | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → Lim ( 𝐵 ·o 𝑥 ) ) |
| 103 | ovex | ⊢ ( 𝐵 ·o 𝑥 ) ∈ V | |
| 104 | omlim | ⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ·o 𝑥 ) ∈ V ∧ Lim ( 𝐵 ·o 𝑥 ) ) ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) | |
| 105 | 103 104 | mpanr1 | ⊢ ( ( 𝐴 ∈ On ∧ Lim ( 𝐵 ·o 𝑥 ) ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 106 | 102 105 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 107 | 106 | ancoms | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) ∧ 𝐴 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 108 | 107 | an32s | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 109 | 100 108 | eqtr4d | ⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
| 110 | 52 109 | sylan9eqr | ⊢ ( ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
| 111 | 51 110 | eqtrd | ⊢ ( ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
| 112 | 111 | exp31 | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
| 113 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 114 | ord0eln0 | ⊢ ( Ord 𝐵 → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 115 | 114 | necon2bbid | ⊢ ( Ord 𝐵 → ( 𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵 ) ) |
| 116 | 113 115 | syl | ⊢ ( 𝐵 ∈ On → ( 𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵 ) ) |
| 117 | 116 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵 ) ) |
| 118 | oveq2 | ⊢ ( 𝐵 = ∅ → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o ∅ ) ) | |
| 119 | 118 22 | sylan9eqr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) |
| 120 | 119 | oveq1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ∅ ·o 𝑥 ) ) |
| 121 | om0r | ⊢ ( 𝑥 ∈ On → ( ∅ ·o 𝑥 ) = ∅ ) | |
| 122 | 120 121 | sylan9eqr | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∅ ) |
| 123 | 122 | anassrs | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 = ∅ ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∅ ) |
| 124 | oveq1 | ⊢ ( 𝐵 = ∅ → ( 𝐵 ·o 𝑥 ) = ( ∅ ·o 𝑥 ) ) | |
| 125 | 124 121 | sylan9eqr | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐵 ·o 𝑥 ) = ∅ ) |
| 126 | 125 | oveq2d | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ∅ ) ) |
| 127 | 126 22 | sylan9eq | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 = ∅ ) ∧ 𝐴 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∅ ) |
| 128 | 127 | an32s | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 = ∅ ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∅ ) |
| 129 | 123 128 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 = ∅ ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
| 130 | 129 | ex | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
| 131 | 54 130 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
| 132 | 131 | adantll | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
| 133 | 117 132 | sylbird | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ¬ ∅ ∈ 𝐵 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
| 134 | 133 | a1dd | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ¬ ∅ ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
| 135 | 112 134 | pm2.61d | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
| 136 | 135 | exp31 | ⊢ ( 𝐵 ∈ On → ( Lim 𝑥 → ( 𝐴 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) ) |
| 137 | 136 | com3l | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) ) |
| 138 | 137 | impd | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
| 139 | 4 8 12 16 24 44 138 | tfinds3 | ⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 140 | 139 | expd | ⊢ ( 𝐶 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) ) |
| 141 | 140 | com3l | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) ) |
| 142 | 141 | 3imp | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |