This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omlimcl | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) | |
| 2 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 3 | eloni | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → Ord ( 𝐴 ·o 𝐵 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 ·o 𝐵 ) ) |
| 5 | 1 4 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Ord ( 𝐴 ·o 𝐵 ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Ord ( 𝐴 ·o 𝐵 ) ) |
| 7 | 0ellim | ⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) | |
| 8 | n0i | ⊢ ( ∅ ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
| 9 | 7 8 | syl | ⊢ ( Lim 𝐵 → ¬ 𝐵 = ∅ ) |
| 10 | n0i | ⊢ ( ∅ ∈ 𝐴 → ¬ 𝐴 = ∅ ) | |
| 11 | 9 10 | anim12ci | ⊢ ( ( Lim 𝐵 ∧ ∅ ∈ 𝐴 ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
| 12 | 11 | adantll | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
| 13 | 12 | adantll | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
| 14 | om00 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) | |
| 15 | 14 | notbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
| 16 | ioran | ⊢ ( ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) | |
| 17 | 15 16 | bitrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
| 18 | 1 17 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
| 20 | 13 19 | mpbird | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ( 𝐴 ·o 𝐵 ) = ∅ ) |
| 21 | vex | ⊢ 𝑦 ∈ V | |
| 22 | 21 | sucid | ⊢ 𝑦 ∈ suc 𝑦 |
| 23 | omlim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ·o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) | |
| 24 | eqeq1 | ⊢ ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) ) | |
| 25 | 24 | biimpac | ⊢ ( ( ( 𝐴 ·o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) |
| 26 | 23 25 | sylan | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) |
| 27 | 22 26 | eleqtrid | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) |
| 28 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) | |
| 29 | 27 28 | sylib | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) |
| 30 | 29 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) |
| 31 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) | |
| 32 | 1 31 | sylan | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 33 | onnbtwn | ⊢ ( 𝑥 ∈ On → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) | |
| 34 | imnan | ⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ) |
| 36 | 35 | com12 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
| 38 | 32 37 | mpd | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝐵 ∈ suc 𝑥 ) |
| 39 | 38 | ad5ant24 | ⊢ ( ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) → ¬ 𝐵 ∈ suc 𝑥 ) |
| 40 | simpl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ On ) | |
| 41 | 40 31 | jca | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) |
| 42 | 1 41 | sylan | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) |
| 43 | 42 | anim2i | ⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ) |
| 44 | 43 | anassrs | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ) |
| 45 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) | |
| 46 | eloni | ⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → Ord ( 𝐴 ·o 𝑥 ) ) | |
| 47 | ordsucelsuc | ⊢ ( Ord ( 𝐴 ·o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 ·o 𝑥 ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 ·o 𝑥 ) ) ) |
| 49 | oa1suc | ⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( ( 𝐴 ·o 𝑥 ) +o 1o ) = suc ( 𝐴 ·o 𝑥 ) ) | |
| 50 | 49 | eleq2d | ⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ↔ suc 𝑦 ∈ suc ( 𝐴 ·o 𝑥 ) ) ) |
| 51 | 48 50 | bitr4d | ⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ) ) |
| 52 | 45 51 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ) ) |
| 54 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 55 | ordgt0ge1 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) | |
| 56 | 54 55 | syl | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
| 58 | 1on | ⊢ 1o ∈ On | |
| 59 | oaword | ⊢ ( ( 1o ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 1o ⊆ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) | |
| 60 | 58 59 | mp3an1 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 1o ⊆ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
| 61 | 45 60 | syldan | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 1o ⊆ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
| 62 | 57 61 | bitrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
| 63 | 62 | biimpa | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
| 64 | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) | |
| 65 | 64 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
| 66 | 63 65 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( 𝐴 ·o suc 𝑥 ) ) |
| 67 | 66 | sseld | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) → suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
| 68 | 53 67 | sylbid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
| 69 | eleq1 | ⊢ ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) ) ) | |
| 70 | 69 | biimprd | ⊢ ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
| 71 | 68 70 | syl9 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) ) |
| 72 | 71 | com23 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) ) |
| 73 | 72 | adantlrl | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) ) |
| 74 | onsucb | ⊢ ( 𝑥 ∈ On ↔ suc 𝑥 ∈ On ) | |
| 75 | omord | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) | |
| 76 | simpl | ⊢ ( ( 𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴 ) → 𝐵 ∈ suc 𝑥 ) | |
| 77 | 75 76 | biimtrrdi | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
| 78 | 74 77 | syl3an2b | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
| 79 | 78 | 3comr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
| 80 | 79 | 3expb | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
| 82 | 73 81 | syl6d | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) |
| 83 | 44 82 | sylan | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) |
| 84 | 83 | an32s | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) |
| 85 | 84 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) |
| 86 | 39 85 | mtod | ⊢ ( ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
| 87 | 86 | rexlimdva2 | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) |
| 88 | 87 | adantr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) |
| 89 | 30 88 | mpd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
| 90 | 89 | pm2.01da | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
| 91 | 90 | adantr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑦 ∈ On ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
| 92 | 91 | nrexdv | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
| 93 | ioran | ⊢ ( ¬ ( ( 𝐴 ·o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ↔ ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ∧ ¬ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) | |
| 94 | 20 92 93 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ( ( 𝐴 ·o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) |
| 95 | dflim3 | ⊢ ( Lim ( 𝐴 ·o 𝐵 ) ↔ ( Ord ( 𝐴 ·o 𝐵 ) ∧ ¬ ( ( 𝐴 ·o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) ) | |
| 96 | 6 94 95 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝐵 ) ) |