This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of TakeutiZaring p. 60. Lemma 3.4 of Schloeder p. 7. (Contributed by NM, 8-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oalimcl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) | |
| 2 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) | |
| 3 | eloni | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ On → Ord ( 𝐴 +o 𝐵 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 +o 𝐵 ) ) |
| 5 | 1 4 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Ord ( 𝐴 +o 𝐵 ) ) |
| 6 | 0ellim | ⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) | |
| 7 | n0i | ⊢ ( ∅ ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
| 8 | 6 7 | syl | ⊢ ( Lim 𝐵 → ¬ 𝐵 = ∅ ) |
| 9 | 8 | ad2antll | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ 𝐵 = ∅ ) |
| 10 | oa00 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) | |
| 11 | simpr | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) | |
| 12 | 10 11 | biimtrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
| 13 | 12 | con3d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 = ∅ → ¬ ( 𝐴 +o 𝐵 ) = ∅ ) ) |
| 14 | 1 13 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ¬ 𝐵 = ∅ → ¬ ( 𝐴 +o 𝐵 ) = ∅ ) ) |
| 15 | 9 14 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ( 𝐴 +o 𝐵 ) = ∅ ) |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 16 | sucid | ⊢ 𝑦 ∈ suc 𝑦 |
| 18 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) | |
| 19 | eqeq1 | ⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) ) | |
| 20 | 18 19 | imbitrid | ⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
| 22 | 17 21 | eleqtrid | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
| 23 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) |
| 25 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) | |
| 26 | 1 25 | sylan | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 27 | onnbtwn | ⊢ ( 𝑥 ∈ On → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) | |
| 28 | imnan | ⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) | |
| 29 | 27 28 | sylibr | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ) |
| 30 | 29 | com12 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
| 32 | 26 31 | mpd | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝐵 ∈ suc 𝑥 ) |
| 33 | 32 | ad2antrl | ⊢ ( ( 𝐴 ∈ On ∧ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) ) → ¬ 𝐵 ∈ suc 𝑥 ) |
| 34 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) ∈ On ) | |
| 35 | eloni | ⊢ ( ( 𝐴 +o 𝑥 ) ∈ On → Ord ( 𝐴 +o 𝑥 ) ) | |
| 36 | ordsucelsuc | ⊢ ( Ord ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 +o 𝑥 ) ) ) | |
| 37 | 34 35 36 | 3syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 +o 𝑥 ) ) ) |
| 38 | oasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) | |
| 39 | 38 | eleq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 +o 𝑥 ) ) ) |
| 40 | 37 39 | bitr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 41 | 26 40 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 42 | eleq1 | ⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ) ) | |
| 43 | 42 | bicomd | ⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 44 | 41 43 | sylan9bbr | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 45 | 1 | adantr | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ On ) |
| 46 | onsucb | ⊢ ( 𝑥 ∈ On ↔ suc 𝑥 ∈ On ) | |
| 47 | 26 46 | sylib | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → suc 𝑥 ∈ On ) |
| 48 | 45 47 | jca | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ) ) |
| 49 | oaord | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) | |
| 50 | 49 | 3expa | ⊢ ( ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ) ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 51 | 48 50 | sylan | ⊢ ( ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 52 | 51 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
| 54 | 44 53 | bitr4d | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐵 ∈ suc 𝑥 ) ) |
| 55 | 54 | biimpd | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
| 56 | 55 | exp32 | ⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( 𝐴 ∈ On → ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) ) ) |
| 57 | 56 | com4l | ⊢ ( 𝐴 ∈ On → ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) ) |
| 58 | 57 | imp32 | ⊢ ( ( 𝐴 ∈ On ∧ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) |
| 59 | 33 58 | mtod | ⊢ ( ( 𝐴 ∈ On ∧ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
| 60 | 59 | exp44 | ⊢ ( 𝐴 ∈ On → ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) ) ) |
| 61 | 60 | imp | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) ) |
| 62 | 61 | rexlimdv | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
| 63 | 62 | adantl | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
| 64 | 24 63 | mpd | ⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
| 65 | 64 | expcom | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
| 66 | 65 | pm2.01d | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
| 67 | 66 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ On ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
| 68 | 67 | nrexdv | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
| 69 | ioran | ⊢ ( ¬ ( ( 𝐴 +o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ↔ ( ¬ ( 𝐴 +o 𝐵 ) = ∅ ∧ ¬ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) | |
| 70 | 15 68 69 | sylanbrc | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ( ( 𝐴 +o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
| 71 | dflim3 | ⊢ ( Lim ( 𝐴 +o 𝐵 ) ↔ ( Ord ( 𝐴 +o 𝐵 ) ∧ ¬ ( ( 𝐴 +o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) ) | |
| 72 | 5 70 71 | sylanbrc | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 +o 𝐵 ) ) |