This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal multiplication. Half of Proposition 8.19 of TakeutiZaring p. 63. Lemma 3.15 of Schloeder p. 9. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omordi | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) | |
| 2 | 1 | ex | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ On ) ) |
| 3 | eleq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅ ) ) | |
| 4 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o ∅ ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
| 6 | 3 5 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) ) |
| 7 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝑦 ) ) | |
| 9 | 8 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) |
| 11 | eleq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o suc 𝑦 ) ) | |
| 13 | 12 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) |
| 15 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝐵 ) ) | |
| 17 | 16 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 18 | 15 17 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 19 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 20 | 19 | pm2.21i | ⊢ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) |
| 21 | 20 | a1i | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
| 22 | elsuci | ⊢ ( 𝐴 ∈ suc 𝑦 → ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) | |
| 23 | omcl | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ·o 𝑦 ) ∈ On ) | |
| 24 | simpl | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → 𝐶 ∈ On ) | |
| 25 | 23 24 | jca | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ) |
| 26 | oaword1 | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ·o 𝑦 ) ⊆ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) | |
| 27 | 26 | sseld | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 28 | 27 | imim2d | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) ) |
| 29 | 28 | imp | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 30 | 29 | adantrl | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 31 | oaord1 | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) | |
| 32 | 31 | biimpa | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
| 33 | oveq2 | ⊢ ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝑦 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝐴 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 35 | 32 34 | syl5ibrcom | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 36 | 35 | adantrr | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 37 | 30 36 | jaod | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 38 | 25 37 | sylan | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 39 | 22 38 | syl5 | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 40 | omsuc | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ·o suc 𝑦 ) = ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) | |
| 41 | 40 | eleq2d | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 43 | 39 42 | sylibrd | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
| 44 | 43 | exp43 | ⊢ ( 𝐶 ∈ On → ( 𝑦 ∈ On → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 45 | 44 | com12 | ⊢ ( 𝑦 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 46 | 45 | adantld | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 47 | 46 | impd | ⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) |
| 48 | id | ⊢ ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) → ( 𝐶 ∈ On ∧ Lim 𝑥 ) ) | |
| 49 | 48 | ad2ant2r | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) → ( 𝐶 ∈ On ∧ Lim 𝑥 ) ) |
| 50 | limsuc | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) | |
| 51 | 50 | biimpa | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → suc 𝐴 ∈ 𝑥 ) |
| 52 | oveq2 | ⊢ ( 𝑦 = suc 𝐴 → ( 𝐶 ·o 𝑦 ) = ( 𝐶 ·o suc 𝐴 ) ) | |
| 53 | 52 | ssiun2s | ⊢ ( suc 𝐴 ∈ 𝑥 → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 54 | 51 53 | syl | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 55 | 54 | adantll | ⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 56 | vex | ⊢ 𝑥 ∈ V | |
| 57 | omlim | ⊢ ( ( 𝐶 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) | |
| 58 | 56 57 | mpanr1 | ⊢ ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 60 | 55 59 | sseqtrrd | ⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝑥 ) ) |
| 61 | 49 60 | sylan | ⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝑥 ) ) |
| 62 | omcl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ·o 𝐴 ) ∈ On ) | |
| 63 | oaord1 | ⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) | |
| 64 | 62 63 | sylan | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
| 65 | 64 | anabss1 | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
| 66 | 65 | biimpa | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
| 67 | omsuc | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ·o suc 𝐴 ) = ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) | |
| 68 | 67 | adantr | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o suc 𝐴 ) = ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
| 69 | 66 68 | eleqtrrd | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
| 70 | 69 | adantrl | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
| 72 | 61 71 | sseldd | ⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) |
| 73 | 72 | exp53 | ⊢ ( 𝐶 ∈ On → ( 𝐴 ∈ On → ( Lim 𝑥 → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) ) |
| 74 | 73 | com13 | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) ) |
| 75 | 74 | imp4c | ⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) |
| 76 | 75 | a1dd | ⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) |
| 77 | 6 10 14 18 21 47 76 | tfinds3 | ⊢ ( 𝐵 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 78 | 77 | com23 | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 79 | 78 | exp4a | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 80 | 79 | exp4a | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) ) |
| 81 | 2 80 | mpdd | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 82 | 81 | com34 | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ∅ ∈ 𝐶 → ( 𝐶 ∈ On → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 83 | 82 | com24 | ⊢ ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 84 | 83 | imp31 | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |