This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal multiplication with zero. Proposition 8.18(1) of TakeutiZaring p. 63. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om0r | ⊢ ( 𝐴 ∈ On → ( ∅ ·o 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ∅ ·o 𝑥 ) = ( ∅ ·o ∅ ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝑥 = ∅ → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o ∅ ) = ∅ ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ∅ ·o 𝑥 ) = ( ∅ ·o 𝑦 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o 𝑦 ) = ∅ ) ) |
| 5 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ∅ ·o 𝑥 ) = ( ∅ ·o suc 𝑦 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o suc 𝑦 ) = ∅ ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( ∅ ·o 𝑥 ) = ( ∅ ·o 𝐴 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o 𝐴 ) = ∅ ) ) |
| 9 | 0elon | ⊢ ∅ ∈ On | |
| 10 | om0 | ⊢ ( ∅ ∈ On → ( ∅ ·o ∅ ) = ∅ ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ∅ ·o ∅ ) = ∅ |
| 12 | oveq1 | ⊢ ( ( ∅ ·o 𝑦 ) = ∅ → ( ( ∅ ·o 𝑦 ) +o ∅ ) = ( ∅ +o ∅ ) ) | |
| 13 | omsuc | ⊢ ( ( ∅ ∈ On ∧ 𝑦 ∈ On ) → ( ∅ ·o suc 𝑦 ) = ( ( ∅ ·o 𝑦 ) +o ∅ ) ) | |
| 14 | 9 13 | mpan | ⊢ ( 𝑦 ∈ On → ( ∅ ·o suc 𝑦 ) = ( ( ∅ ·o 𝑦 ) +o ∅ ) ) |
| 15 | oa0 | ⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) | |
| 16 | 9 15 | ax-mp | ⊢ ( ∅ +o ∅ ) = ∅ |
| 17 | 16 | eqcomi | ⊢ ∅ = ( ∅ +o ∅ ) |
| 18 | 17 | a1i | ⊢ ( 𝑦 ∈ On → ∅ = ( ∅ +o ∅ ) ) |
| 19 | 14 18 | eqeq12d | ⊢ ( 𝑦 ∈ On → ( ( ∅ ·o suc 𝑦 ) = ∅ ↔ ( ( ∅ ·o 𝑦 ) +o ∅ ) = ( ∅ +o ∅ ) ) ) |
| 20 | 12 19 | imbitrrid | ⊢ ( 𝑦 ∈ On → ( ( ∅ ·o 𝑦 ) = ∅ → ( ∅ ·o suc 𝑦 ) = ∅ ) ) |
| 21 | iuneq2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ → ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ∅ ) | |
| 22 | iun0 | ⊢ ∪ 𝑦 ∈ 𝑥 ∅ = ∅ | |
| 23 | 21 22 | eqtrdi | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ → ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ ) |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | omlim | ⊢ ( ( ∅ ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∅ ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) ) | |
| 26 | 9 25 | mpan | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ∅ ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) ) |
| 27 | 24 26 | mpan | ⊢ ( Lim 𝑥 → ( ∅ ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) ) |
| 28 | 27 | eqeq1d | ⊢ ( Lim 𝑥 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ ) ) |
| 29 | 23 28 | imbitrrid | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ → ( ∅ ·o 𝑥 ) = ∅ ) ) |
| 30 | 2 4 6 8 11 20 29 | tfinds | ⊢ ( 𝐴 ∈ On → ( ∅ ·o 𝐴 ) = ∅ ) |