This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | an32s.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | |
| Assertion | ancom1s | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜒 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32s.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | |
| 2 | pm3.22 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → ( 𝜑 ∧ 𝜓 ) ) | |
| 3 | 2 1 | sylan | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜒 ) → 𝜃 ) |