This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for logcn . (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| logcnlem.s | ⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | ||
| logcnlem.t | ⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) | ||
| logcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | ||
| logcnlem.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| logcnlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| logcnlem.l | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ) | ||
| Assertion | logcnlem4 | ⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( log ‘ 𝐵 ) ) ) ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | logcnlem.s | ⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | |
| 3 | logcnlem.t | ⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) | |
| 4 | logcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 5 | logcnlem.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | logcnlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 7 | logcnlem.l | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ) | |
| 8 | 1 | ellogdm | ⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| 9 | 8 | simplbi | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 11 | 1 | logdmn0 | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ≠ 0 ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 13 | 10 12 | logcld | ⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 14 | 13 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 16 | 1 | ellogdm | ⊢ ( 𝐵 ∈ 𝐷 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ+ ) ) ) |
| 17 | 16 | simplbi | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ ℂ ) |
| 18 | 6 17 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 19 | 1 | logdmn0 | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ≠ 0 ) |
| 20 | 6 19 | syl | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 21 | 18 20 | logcld | ⊢ ( 𝜑 → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 22 | 21 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 23 | 22 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 24 | 15 23 | abssubd | ⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( log ‘ 𝐵 ) ) ) ) = ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 25 | 21 13 | imsubd | ⊢ ( 𝜑 → ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 26 | efsub | ⊢ ( ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐵 ) ) / ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 27 | 21 13 26 | syl2anc | ⊢ ( 𝜑 → ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐵 ) ) / ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
| 28 | eflog | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) | |
| 29 | 18 20 28 | syl2anc | ⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 30 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 31 | 10 12 30 | syl2anc | ⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 32 | 29 31 | oveq12d | ⊢ ( 𝜑 → ( ( exp ‘ ( log ‘ 𝐵 ) ) / ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) |
| 33 | 27 32 | eqtrd | ⊢ ( 𝜑 → ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) |
| 34 | 18 10 12 | divcld | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 35 | 18 10 20 12 | divne0d | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ≠ 0 ) |
| 36 | 21 13 | subcld | ⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 37 | 1 2 3 4 5 6 7 | logcnlem3 | ⊢ ( 𝜑 → ( - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
| 38 | 37 | simpld | ⊢ ( 𝜑 → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 39 | 38 25 | breqtrrd | ⊢ ( 𝜑 → - π < ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ) |
| 40 | 37 | simprd | ⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 41 | 25 40 | eqbrtrd | ⊢ ( 𝜑 → ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 42 | ellogrn | ⊢ ( ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ≤ π ) ) | |
| 43 | 36 39 41 42 | syl3anbrc | ⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ran log ) |
| 44 | logeftb | ⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( 𝐵 / 𝐴 ) ≠ 0 ∧ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ran log ) → ( ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) ) | |
| 45 | 34 35 43 44 | syl3anc | ⊢ ( 𝜑 → ( ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) ) |
| 46 | 33 45 | mpbird | ⊢ ( 𝜑 → ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) |
| 47 | 46 | eqcomd | ⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) = ( log ‘ ( 𝐵 / 𝐴 ) ) ) |
| 48 | 47 | fveq2d | ⊢ ( 𝜑 → ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 49 | 25 48 | eqtr3d | ⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 50 | 49 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 51 | 24 50 | eqtrd | ⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( log ‘ 𝐵 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 52 | 34 35 | logcld | ⊢ ( 𝜑 → ( log ‘ ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
| 53 | 52 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ) |
| 54 | 53 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℂ ) |
| 55 | 54 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ∈ ℝ ) |
| 56 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 57 | 1re | ⊢ 1 ∈ ℝ | |
| 58 | 10 18 | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 59 | 58 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 60 | 10 12 | absrpcld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 61 | 59 60 | rerpdivcld | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 62 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) → ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) | |
| 63 | 57 61 62 | sylancr | ⊢ ( 𝜑 → ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 64 | 34 | recld | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 65 | 10 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 66 | 5 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 67 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 68 | rpaddcl | ⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 1 + 𝑅 ) ∈ ℝ+ ) | |
| 69 | 67 5 68 | sylancr | ⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ+ ) |
| 70 | 66 69 | rerpdivcld | ⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ∈ ℝ ) |
| 71 | 65 70 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ∈ ℝ ) |
| 72 | 3 71 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 73 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 75 | 10 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 76 | 75 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 77 | 76 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 79 | 74 78 | ifclda | ⊢ ( 𝜑 → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 80 | 2 79 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 81 | ltmin | ⊢ ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ↔ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ∧ ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) ) ) | |
| 82 | 59 80 72 81 | syl3anc | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ↔ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ∧ ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) ) ) |
| 83 | 7 82 | mpbid | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ∧ ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) ) |
| 84 | 83 | simprd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) |
| 85 | 69 | rpred | ⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ ) |
| 86 | 66 | ltp1d | ⊢ ( 𝜑 → 𝑅 < ( 𝑅 + 1 ) ) |
| 87 | 66 | recnd | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 88 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 89 | addcom | ⊢ ( ( 𝑅 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑅 + 1 ) = ( 1 + 𝑅 ) ) | |
| 90 | 87 88 89 | sylancl | ⊢ ( 𝜑 → ( 𝑅 + 1 ) = ( 1 + 𝑅 ) ) |
| 91 | 86 90 | breqtrd | ⊢ ( 𝜑 → 𝑅 < ( 1 + 𝑅 ) ) |
| 92 | 66 85 91 | ltled | ⊢ ( 𝜑 → 𝑅 ≤ ( 1 + 𝑅 ) ) |
| 93 | 85 | recnd | ⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℂ ) |
| 94 | 93 | mulridd | ⊢ ( 𝜑 → ( ( 1 + 𝑅 ) · 1 ) = ( 1 + 𝑅 ) ) |
| 95 | 92 94 | breqtrrd | ⊢ ( 𝜑 → 𝑅 ≤ ( ( 1 + 𝑅 ) · 1 ) ) |
| 96 | 57 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 97 | 66 96 69 | ledivmuld | ⊢ ( 𝜑 → ( ( 𝑅 / ( 1 + 𝑅 ) ) ≤ 1 ↔ 𝑅 ≤ ( ( 1 + 𝑅 ) · 1 ) ) ) |
| 98 | 95 97 | mpbird | ⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ≤ 1 ) |
| 99 | 70 96 60 | lemul2d | ⊢ ( 𝜑 → ( ( 𝑅 / ( 1 + 𝑅 ) ) ≤ 1 ↔ ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · 1 ) ) ) |
| 100 | 98 99 | mpbid | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · 1 ) ) |
| 101 | 65 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 102 | 101 | mulridd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · 1 ) = ( abs ‘ 𝐴 ) ) |
| 103 | 100 102 | breqtrd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ≤ ( abs ‘ 𝐴 ) ) |
| 104 | 3 103 | eqbrtrid | ⊢ ( 𝜑 → 𝑇 ≤ ( abs ‘ 𝐴 ) ) |
| 105 | 59 72 65 84 104 | ltletrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( abs ‘ 𝐴 ) ) |
| 106 | 105 102 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · 1 ) ) |
| 107 | 59 96 60 | ltdivmuld | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · 1 ) ) ) |
| 108 | 106 107 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ) |
| 109 | posdif | ⊢ ( ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ↔ 0 < ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) | |
| 110 | 61 57 109 | sylancl | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ↔ 0 < ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
| 111 | 108 110 | mpbid | ⊢ ( 𝜑 → 0 < ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 112 | 58 10 12 | divcld | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝐴 ) ∈ ℂ ) |
| 113 | 112 | releabsd | ⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) ) |
| 114 | 10 18 10 12 | divsubdird | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝐴 ) = ( ( 𝐴 / 𝐴 ) − ( 𝐵 / 𝐴 ) ) ) |
| 115 | 10 12 | dividd | ⊢ ( 𝜑 → ( 𝐴 / 𝐴 ) = 1 ) |
| 116 | 115 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐴 ) − ( 𝐵 / 𝐴 ) ) = ( 1 − ( 𝐵 / 𝐴 ) ) ) |
| 117 | 114 116 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝐴 ) = ( 1 − ( 𝐵 / 𝐴 ) ) ) |
| 118 | 117 | fveq2d | ⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( ℜ ‘ ( 1 − ( 𝐵 / 𝐴 ) ) ) ) |
| 119 | resub | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐵 / 𝐴 ) ∈ ℂ ) → ( ℜ ‘ ( 1 − ( 𝐵 / 𝐴 ) ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) | |
| 120 | 88 34 119 | sylancr | ⊢ ( 𝜑 → ( ℜ ‘ ( 1 − ( 𝐵 / 𝐴 ) ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 121 | 118 120 | eqtrd | ⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 122 | re1 | ⊢ ( ℜ ‘ 1 ) = 1 | |
| 123 | 122 | oveq1i | ⊢ ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) = ( 1 − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 124 | 121 123 | eqtrdi | ⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( 1 − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 125 | 58 10 12 | absdivd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 126 | 113 124 125 | 3brtr3d | ⊢ ( 𝜑 → ( 1 − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 127 | 96 64 61 126 | subled | ⊢ ( 𝜑 → ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 128 | 56 63 64 111 127 | ltletrd | ⊢ ( 𝜑 → 0 < ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 129 | argregt0 | ⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ 0 < ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 130 | 34 128 129 | syl2anc | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 131 | cosq14gt0 | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) | |
| 132 | 130 131 | syl | ⊢ ( 𝜑 → 0 < ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 133 | 132 | gt0ne0d | ⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ≠ 0 ) |
| 134 | 53 133 | retancld | ⊢ ( 𝜑 → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ∈ ℝ ) |
| 135 | 134 | recnd | ⊢ ( 𝜑 → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ∈ ℂ ) |
| 136 | 135 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) ∈ ℝ ) |
| 137 | tanabsge | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ≤ ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) ) | |
| 138 | 130 137 | syl | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ≤ ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) ) |
| 139 | 128 | gt0ne0d | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ≠ 0 ) |
| 140 | tanarg | ⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) | |
| 141 | 34 139 140 | syl2anc | ⊢ ( 𝜑 → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 142 | 141 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) = ( abs ‘ ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 143 | 34 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 144 | 143 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
| 145 | 64 | recnd | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
| 146 | 144 145 139 | absdivd | ⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( abs ‘ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 147 | 56 64 128 | ltled | ⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 148 | 64 147 | absidd | ⊢ ( 𝜑 → ( abs ‘ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) = ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 149 | 148 | oveq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( abs ‘ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 150 | 142 146 149 | 3eqtrd | ⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) = ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 151 | 144 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ) |
| 152 | 64 66 | remulcld | ⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ∈ ℝ ) |
| 153 | 18 10 | subcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 154 | 153 10 12 | divcld | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 𝐴 ) ∈ ℂ ) |
| 155 | absimle | ⊢ ( ( ( 𝐵 − 𝐴 ) / 𝐴 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) ≤ ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) | |
| 156 | 154 155 | syl | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) ≤ ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) |
| 157 | 18 10 10 12 | divsubdird | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 𝐴 ) = ( ( 𝐵 / 𝐴 ) − ( 𝐴 / 𝐴 ) ) ) |
| 158 | 115 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) − ( 𝐴 / 𝐴 ) ) = ( ( 𝐵 / 𝐴 ) − 1 ) ) |
| 159 | 157 158 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 𝐴 ) = ( ( 𝐵 / 𝐴 ) − 1 ) ) |
| 160 | 159 | fveq2d | ⊢ ( 𝜑 → ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) = ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) ) |
| 161 | imsub | ⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − ( ℑ ‘ 1 ) ) ) | |
| 162 | 34 88 161 | sylancl | ⊢ ( 𝜑 → ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − ( ℑ ‘ 1 ) ) ) |
| 163 | im1 | ⊢ ( ℑ ‘ 1 ) = 0 | |
| 164 | 163 | oveq2i | ⊢ ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − ( ℑ ‘ 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − 0 ) |
| 165 | 162 164 | eqtrdi | ⊢ ( 𝜑 → ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − 0 ) ) |
| 166 | 144 | subid1d | ⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − 0 ) = ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 167 | 160 165 166 | 3eqtrrd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) = ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) |
| 168 | 167 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) = ( abs ‘ ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) ) |
| 169 | 10 18 | abssubd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 170 | 169 | oveq1d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 171 | 153 10 12 | absdivd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 172 | 170 171 | eqtr4d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) |
| 173 | 156 168 172 | 3brtr4d | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 174 | 65 59 | resubcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ∈ ℝ ) |
| 175 | 174 66 | remulcld | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ∈ ℝ ) |
| 176 | 65 152 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ∈ ℝ ) |
| 177 | 59 | recnd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
| 178 | 88 | a1i | ⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 179 | 177 178 87 | adddid | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) = ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 1 ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 180 | 177 | mulridd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 1 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 181 | 180 | oveq1d | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 1 ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 182 | 179 181 | eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 183 | 69 | rpne0d | ⊢ ( 𝜑 → ( 1 + 𝑅 ) ≠ 0 ) |
| 184 | 101 87 93 183 | divassd | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ) |
| 185 | 184 3 | eqtr4di | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) = 𝑇 ) |
| 186 | 84 185 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) ) |
| 187 | 65 66 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · 𝑅 ) ∈ ℝ ) |
| 188 | 59 187 69 | ltmuldivd | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) ) ) |
| 189 | 186 188 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ) |
| 190 | 182 189 | eqbrtrrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ) |
| 191 | 59 66 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ∈ ℝ ) |
| 192 | 59 191 187 | ltaddsubd | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) ) |
| 193 | 190 192 | mpbid | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 194 | 101 177 87 | subdird | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) = ( ( ( abs ‘ 𝐴 ) · 𝑅 ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 195 | 193 194 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ) |
| 196 | 60 | rpne0d | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 197 | 101 177 101 196 | divsubdird | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 198 | 101 196 | dividd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) = 1 ) |
| 199 | 198 | oveq1d | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) = ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 200 | 197 199 | eqtrd | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) = ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 201 | 200 127 | eqbrtrd | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 202 | 174 64 60 | ledivmuld | ⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ↔ ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 203 | 201 202 | mpbid | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 204 | 65 64 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ) |
| 205 | 174 204 5 | lemul1d | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ↔ ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ≤ ( ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) · 𝑅 ) ) ) |
| 206 | 203 205 | mpbid | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ≤ ( ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) · 𝑅 ) ) |
| 207 | 101 145 87 | mulassd | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) · 𝑅 ) = ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 208 | 206 207 | breqtrd | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ≤ ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 209 | 59 175 176 195 208 | ltletrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 210 | 59 152 60 | ltdivmuld | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) ) |
| 211 | 209 210 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) |
| 212 | 151 61 152 173 211 | lelttrd | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) |
| 213 | ltdivmul | ⊢ ( ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ∧ 0 < ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) → ( ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) < 𝑅 ↔ ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) | |
| 214 | 151 66 64 128 213 | syl112anc | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) < 𝑅 ↔ ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 215 | 212 214 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) < 𝑅 ) |
| 216 | 150 215 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) < 𝑅 ) |
| 217 | 55 136 66 138 216 | lelttrd | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) < 𝑅 ) |
| 218 | 51 217 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( log ‘ 𝐵 ) ) ) ) < 𝑅 ) |