This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for logcn . (Contributed by Mario Carneiro, 18-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | logcnlem5 | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | difss | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ | |
| 3 | 1 2 | eqsstri | ⊢ 𝐷 ⊆ ℂ |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) | |
| 6 | 1 | ellogdm | ⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
| 7 | 6 | simplbi | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
| 8 | 1 | logdmn0 | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
| 9 | 7 8 | logcld | ⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 10 | 9 | imcld | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 11 | 5 10 | fmpti | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) : 𝐷 ⟶ ℝ |
| 12 | eqid | ⊢ if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) = if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) | |
| 13 | eqid | ⊢ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) | |
| 14 | simpl | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+ ) → 𝑦 ∈ 𝐷 ) | |
| 15 | simpr | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+ ) → 𝑧 ∈ ℝ+ ) | |
| 16 | 1 12 13 14 15 | logcnlem2 | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+ ) → if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ∈ ℝ+ ) |
| 17 | simpll | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → 𝑦 ∈ 𝐷 ) | |
| 18 | simprl | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → 𝑧 ∈ ℝ+ ) | |
| 19 | simplr | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → 𝑤 ∈ 𝐷 ) | |
| 20 | simprr | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) | |
| 21 | 1 12 13 17 18 19 20 | logcnlem4 | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) < 𝑧 ) |
| 22 | 21 | expr | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) < 𝑧 ) ) |
| 23 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( ℑ ‘ ( log ‘ 𝑥 ) ) = ( ℑ ‘ ( log ‘ 𝑦 ) ) ) | |
| 24 | fvex | ⊢ ( ℑ ‘ ( log ‘ 𝑦 ) ) ∈ V | |
| 25 | 23 5 24 | fvmpt | ⊢ ( 𝑦 ∈ 𝐷 → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( ℑ ‘ ( log ‘ 𝑦 ) ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( ℑ ‘ ( log ‘ 𝑦 ) ) ) |
| 27 | 2fveq3 | ⊢ ( 𝑥 = 𝑤 → ( ℑ ‘ ( log ‘ 𝑥 ) ) = ( ℑ ‘ ( log ‘ 𝑤 ) ) ) | |
| 28 | fvex | ⊢ ( ℑ ‘ ( log ‘ 𝑤 ) ) ∈ V | |
| 29 | 27 5 28 | fvmpt | ⊢ ( 𝑤 ∈ 𝐷 → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) = ( ℑ ‘ ( log ‘ 𝑤 ) ) ) |
| 30 | 29 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) = ( ℑ ‘ ( log ‘ 𝑤 ) ) ) |
| 31 | 26 30 | oveq12d | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) = ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) |
| 32 | 31 | fveq2d | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( abs ‘ ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) ) = ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) ) |
| 33 | 32 | breq1d | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( abs ‘ ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) ) < 𝑧 ↔ ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) < 𝑧 ) ) |
| 34 | 22 33 | sylibrd | ⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) → ( abs ‘ ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) ) < 𝑧 ) ) |
| 35 | 11 16 34 | elcncf1ii | ⊢ ( ( 𝐷 ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℝ ) ) |
| 36 | 3 4 35 | mp2an | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℝ ) |