This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | argregt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | gt0ne0 | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 4 | fveq2 | ⊢ ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ 0 ) ) | |
| 5 | re0 | ⊢ ( ℜ ‘ 0 ) = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = 0 ) |
| 7 | 6 | necon3i | ⊢ ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 8 | 3 7 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 9 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 10 | 8 9 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 11 | 10 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 12 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 13 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ 𝐴 ) ) | |
| 14 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 17 | 16 | mul01d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) = 0 ) |
| 18 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) | |
| 19 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 20 | 8 19 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 21 | 20 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 22 | 18 16 21 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 23 | 15 22 | remul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 24 | 18 16 21 | divcan2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) = 𝐴 ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 26 | 23 25 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 27 | 13 17 26 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 28 | 0re | ⊢ 0 ∈ ℝ | |
| 29 | 28 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ ) |
| 30 | 22 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 31 | 29 30 20 | ltmul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 < ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ↔ ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) ) |
| 32 | 27 31 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 33 | efiarg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) | |
| 34 | 8 33 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 36 | 32 35 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 37 | recosval | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | |
| 38 | 11 37 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 39 | 36 38 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 40 | fveq2 | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 41 | 40 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 42 | 11 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 43 | cosneg | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 45 | fveqeq2 | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | |
| 46 | 44 45 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 47 | 11 | absord | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) ∨ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 48 | 41 46 47 | mpjaod | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 49 | 39 48 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 50 | 12 49 | eqbrtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 51 | 42 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 52 | 42 | absge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 53 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 54 | 8 53 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 55 | 54 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 56 | pire | ⊢ π ∈ ℝ | |
| 57 | 56 | renegcli | ⊢ - π ∈ ℝ |
| 58 | ltle | ⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 59 | 57 11 58 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 60 | 55 59 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 61 | 54 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 62 | absle | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) | |
| 63 | 11 56 62 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) |
| 64 | 60 61 63 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 65 | 28 56 | elicc2i | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ↔ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
| 66 | 51 52 64 65 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ) |
| 67 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 68 | pirp | ⊢ π ∈ ℝ+ | |
| 69 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 70 | rpge0 | ⊢ ( ( π / 2 ) ∈ ℝ+ → 0 ≤ ( π / 2 ) ) | |
| 71 | 68 69 70 | mp2b | ⊢ 0 ≤ ( π / 2 ) |
| 72 | rphalflt | ⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) | |
| 73 | 68 72 | ax-mp | ⊢ ( π / 2 ) < π |
| 74 | 67 56 73 | ltleii | ⊢ ( π / 2 ) ≤ π |
| 75 | 28 56 | elicc2i | ⊢ ( ( π / 2 ) ∈ ( 0 [,] π ) ↔ ( ( π / 2 ) ∈ ℝ ∧ 0 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ π ) ) |
| 76 | 67 71 74 75 | mpbir3an | ⊢ ( π / 2 ) ∈ ( 0 [,] π ) |
| 77 | cosord | ⊢ ( ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ∧ ( π / 2 ) ∈ ( 0 [,] π ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | |
| 78 | 66 76 77 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 79 | 50 78 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ) |
| 80 | abslt | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) ) | |
| 81 | 11 67 80 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) ) |
| 82 | 79 81 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) |
| 83 | 82 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 84 | 82 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) |
| 85 | 67 | renegcli | ⊢ - ( π / 2 ) ∈ ℝ |
| 86 | 85 | rexri | ⊢ - ( π / 2 ) ∈ ℝ* |
| 87 | 67 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 88 | elioo2 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) ) | |
| 89 | 86 87 88 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) |
| 90 | 11 83 84 89 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |