This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for logcn . (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| logcnlem.s | ⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | ||
| logcnlem.t | ⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) | ||
| logcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | ||
| logcnlem.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| logcnlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| logcnlem.l | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ) | ||
| Assertion | logcnlem3 | ⊢ ( 𝜑 → ( - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | logcnlem.s | ⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | |
| 3 | logcnlem.t | ⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) | |
| 4 | logcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 5 | logcnlem.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | logcnlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 7 | logcnlem.l | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ) | |
| 8 | pire | ⊢ π ∈ ℝ | |
| 9 | 8 | renegcli | ⊢ - π ∈ ℝ |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π ∈ ℝ ) |
| 11 | 1 | ellogdm | ⊢ ( 𝐵 ∈ 𝐷 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ+ ) ) ) |
| 12 | 11 | simplbi | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ ℂ ) |
| 13 | 6 12 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 14 | 1 | logdmn0 | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ≠ 0 ) |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 16 | 13 15 | logcld | ⊢ ( 𝜑 → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 17 | 16 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 19 | 1 | ellogdm | ⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| 20 | 19 | simplbi | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 22 | 1 | logdmn0 | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ≠ 0 ) |
| 23 | 4 22 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 24 | 21 23 | logcld | ⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 25 | 24 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 26 | 17 25 | resubcld | ⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 28 | 13 15 | logimcld | ⊢ ( 𝜑 → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) ) |
| 29 | 28 | simpld | ⊢ ( 𝜑 → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 31 | 17 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 33 | 32 | subid1d | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 34 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 35 | 0red | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 0 ∈ ℝ ) | |
| 36 | argimlt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) | |
| 37 | 21 36 | sylan | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) |
| 38 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) |
| 40 | 39 | simprd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) |
| 41 | 34 35 18 40 | ltsub2dd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 42 | 33 41 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 43 | 10 18 27 30 42 | lttrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 44 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 45 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 46 | 21 45 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 47 | 19 | simprbi | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
| 48 | 4 47 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
| 49 | 46 48 | sylbird | ⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ+ ) ) |
| 50 | 49 | imp | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ+ ) |
| 51 | 50 | relogcld | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 52 | 51 | reim0d | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) = 0 ) |
| 53 | 52 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) ) |
| 54 | 31 | subid1d | ⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 56 | 53 55 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 57 | 44 56 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 58 | 9 | a1i | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π ∈ ℝ ) |
| 59 | 25 | renegcld | ⊢ ( 𝜑 → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 61 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 62 | argimgt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) | |
| 63 | 21 62 | sylan | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
| 64 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 66 | 65 | simprd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
| 67 | ltneg | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 68 | 25 8 67 | sylancl | ⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 70 | 66 69 | mpbid | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 71 | df-neg | ⊢ - ( ℑ ‘ ( log ‘ 𝐴 ) ) = ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | |
| 72 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 73 | 21 13 | imsubd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 74 | 73 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 75 | 21 13 | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 76 | 75 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 78 | 75 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 79 | 78 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 80 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 81 | 80 | imcld | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 82 | absimle | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) | |
| 83 | 75 82 | syl | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 84 | 76 78 | absled | ⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ↔ ( - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∧ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) ) |
| 85 | 83 84 | mpbid | ⊢ ( 𝜑 → ( - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∧ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) |
| 86 | 85 | simprd | ⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 88 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 89 | 88 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 90 | 21 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 91 | 90 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 92 | 91 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 94 | 89 93 | ifclda | ⊢ ( 𝜑 → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 95 | 2 94 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 96 | 21 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 97 | 5 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 98 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 99 | rpaddcl | ⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 1 + 𝑅 ) ∈ ℝ+ ) | |
| 100 | 98 5 99 | sylancr | ⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ+ ) |
| 101 | 97 100 | rerpdivcld | ⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ∈ ℝ ) |
| 102 | 96 101 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ∈ ℝ ) |
| 103 | 3 102 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 104 | 95 103 | ifcld | ⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ∈ ℝ ) |
| 105 | min1 | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ≤ 𝑆 ) | |
| 106 | 95 103 105 | syl2anc | ⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ≤ 𝑆 ) |
| 107 | 78 104 95 7 106 | ltletrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
| 108 | 107 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
| 109 | gt0ne0 | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) | |
| 110 | 90 109 | sylan | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 111 | 88 46 | imbitrid | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ+ → ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 112 | 111 | necon3ad | ⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) ≠ 0 → ¬ 𝐴 ∈ ℝ+ ) ) |
| 113 | 112 | imp | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ¬ 𝐴 ∈ ℝ+ ) |
| 114 | iffalse | ⊢ ( ¬ 𝐴 ∈ ℝ+ → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | |
| 115 | 2 114 | eqtrid | ⊢ ( ¬ 𝐴 ∈ ℝ+ → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 116 | 113 115 | syl | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 117 | 110 116 | syldan | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 118 | 0re | ⊢ 0 ∈ ℝ | |
| 119 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( ℑ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℑ ‘ 𝐴 ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) ) | |
| 120 | 118 90 119 | sylancr | ⊢ ( 𝜑 → ( 0 < ( ℑ ‘ 𝐴 ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) ) |
| 121 | 120 | imp | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) |
| 122 | 81 121 | absidd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 123 | 117 122 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝑆 = ( ℑ ‘ 𝐴 ) ) |
| 124 | 108 123 | breqtrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
| 125 | 77 79 81 87 124 | lelttrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
| 126 | 74 125 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
| 127 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 128 | 127 | subid1d | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
| 129 | 126 128 | breqtrrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
| 130 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 131 | 13 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 132 | 130 131 90 | ltsub2d | ⊢ ( 𝜑 → ( 0 < ( ℑ ‘ 𝐵 ) ↔ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) ) |
| 133 | 132 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ 𝐵 ) ↔ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) ) |
| 134 | 129 133 | mpbird | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ 𝐵 ) ) |
| 135 | argimgt0 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐵 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) ) | |
| 136 | 72 134 135 | syl2anc | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) ) |
| 137 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) ) | |
| 138 | 136 137 | syl | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) ) |
| 139 | 138 | simpld | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 140 | 130 17 25 | ltsub1d | ⊢ ( 𝜑 → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ↔ ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 141 | 140 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ↔ ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 142 | 139 141 | mpbid | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 143 | 71 142 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 144 | 58 60 61 70 143 | lttrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 145 | lttri4 | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) < 0 ∨ ( ℑ ‘ 𝐴 ) = 0 ∨ 0 < ( ℑ ‘ 𝐴 ) ) ) | |
| 146 | 90 118 145 | sylancl | ⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) < 0 ∨ ( ℑ ‘ 𝐴 ) = 0 ∨ 0 < ( ℑ ‘ 𝐴 ) ) ) |
| 147 | 43 57 144 146 | mpjao3dan | ⊢ ( 𝜑 → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 148 | 8 | a1i | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → π ∈ ℝ ) |
| 149 | 34 | renegcld | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 150 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝐵 ∈ ℂ ) |
| 151 | 91 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 152 | 151 | subid1d | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
| 153 | 90 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 154 | 78 | renegcld | ⊢ ( 𝜑 → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 155 | 154 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 156 | 76 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 157 | 78 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 158 | 107 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
| 159 | 118 | ltnri | ⊢ ¬ 0 < 0 |
| 160 | breq1 | ⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ( ( ℑ ‘ 𝐴 ) < 0 ↔ 0 < 0 ) ) | |
| 161 | 159 160 | mtbiri | ⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ¬ ( ℑ ‘ 𝐴 ) < 0 ) |
| 162 | 161 | necon2ai | ⊢ ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 163 | 162 116 | sylan2 | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 164 | ltle | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≤ 0 ) ) | |
| 165 | 90 118 164 | sylancl | ⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≤ 0 ) ) |
| 166 | 165 | imp | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ≤ 0 ) |
| 167 | 153 166 | absnidd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 168 | 163 167 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝑆 = - ( ℑ ‘ 𝐴 ) ) |
| 169 | 158 168 | breqtrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < - ( ℑ ‘ 𝐴 ) ) |
| 170 | 157 153 169 | ltnegcon2d | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < - ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 171 | 85 | simpld | ⊢ ( 𝜑 → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 172 | 171 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 173 | 153 155 156 170 172 | ltletrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 174 | 73 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 175 | 173 174 | breqtrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 176 | 152 175 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐴 ) − 0 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 177 | 150 | imcld | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 178 | 177 35 153 | ltsub2d | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐵 ) < 0 ↔ ( ( ℑ ‘ 𝐴 ) − 0 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) ) |
| 179 | 176 178 | mpbird | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐵 ) < 0 ) |
| 180 | argimlt0 | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) ) | |
| 181 | 150 179 180 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) ) |
| 182 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) ) | |
| 183 | 181 182 | syl | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) ) |
| 184 | 183 | simprd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) |
| 185 | 18 35 34 184 | ltsub1dd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 186 | 185 71 | breqtrrdi | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 187 | 39 | simpld | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 188 | ltnegcon1 | ⊢ ( ( π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) | |
| 189 | 8 34 188 | sylancr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 190 | 187 189 | mpbid | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
| 191 | 27 149 148 186 190 | lttrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < π ) |
| 192 | 27 148 191 | ltled | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 193 | 28 | simprd | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) |
| 194 | 193 | adantr | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) |
| 195 | 56 194 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 196 | 8 | a1i | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 197 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 198 | 0red | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ∈ ℝ ) | |
| 199 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 200 | 65 | simpld | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 201 | 198 199 197 200 | ltsub2dd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) ) |
| 202 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 203 | 202 | subid1d | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 204 | 201 203 | breqtrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 205 | 138 | simprd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) |
| 206 | 61 197 196 204 205 | lttrd | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < π ) |
| 207 | 61 196 206 | ltled | ⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 208 | 192 195 207 146 | mpjao3dan | ⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 209 | 147 208 | jca | ⊢ ( 𝜑 → ( - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |