This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absimle | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negicn | ⊢ - i ∈ ℂ | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ∈ ℂ → - i ∈ ℂ ) |
| 3 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 4 | 2 3 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ ) |
| 5 | absrele | ⊢ ( ( - i · 𝐴 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ ( - i · 𝐴 ) ) ) ≤ ( abs ‘ ( - i · 𝐴 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ ( - i · 𝐴 ) ) ) ≤ ( abs ‘ ( - i · 𝐴 ) ) ) |
| 7 | imre | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( abs ‘ ( ℜ ‘ ( - i · 𝐴 ) ) ) ) |
| 9 | absmul | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( - i · 𝐴 ) ) = ( ( abs ‘ - i ) · ( abs ‘ 𝐴 ) ) ) | |
| 10 | 1 9 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( - i · 𝐴 ) ) = ( ( abs ‘ - i ) · ( abs ‘ 𝐴 ) ) ) |
| 11 | ax-icn | ⊢ i ∈ ℂ | |
| 12 | absneg | ⊢ ( i ∈ ℂ → ( abs ‘ - i ) = ( abs ‘ i ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( abs ‘ - i ) = ( abs ‘ i ) |
| 14 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 15 | 13 14 | eqtri | ⊢ ( abs ‘ - i ) = 1 |
| 16 | 15 | oveq1i | ⊢ ( ( abs ‘ - i ) · ( abs ‘ 𝐴 ) ) = ( 1 · ( abs ‘ 𝐴 ) ) |
| 17 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 18 | 17 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 19 | 18 | mullidd | ⊢ ( 𝐴 ∈ ℂ → ( 1 · ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 20 | 16 19 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ - i ) · ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 21 | 10 20 | eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( abs ‘ ( - i · 𝐴 ) ) ) |
| 22 | 6 8 21 | 3brtr4d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) |