This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The basic relation between the "arg" function Im o. log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanarg | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ 𝐴 ) / ( ℜ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ 0 ) ) | |
| 2 | re0 | ⊢ ( ℜ ‘ 0 ) = 0 | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = 0 ) |
| 4 | 3 | necon3i | ⊢ ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 5 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 7 | 6 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 9 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 11 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 14 | 13 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 15 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 16 | 4 15 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 17 | 16 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 18 | sqne0 | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( abs ‘ 𝐴 ) ≠ 0 ) ) | |
| 19 | 13 18 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( abs ‘ 𝐴 ) ≠ 0 ) ) |
| 20 | 17 19 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 21 | 10 14 14 20 | divdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 22 | ax-icn | ⊢ i ∈ ℂ | |
| 23 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 24 | 22 8 23 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 25 | 2z | ⊢ 2 ∈ ℤ | |
| 26 | efexp | ⊢ ( ( ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ∧ 2 ∈ ℤ ) → ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ↑ 2 ) ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ↑ 2 ) ) |
| 28 | efiarg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) | |
| 29 | 4 28 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ↑ 2 ) = ( ( 𝐴 / ( abs ‘ 𝐴 ) ) ↑ 2 ) ) |
| 31 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 32 | 31 13 17 | sqdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 / ( abs ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 33 | 27 30 32 | 3eqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 34 | 14 20 | dividd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 35 | 33 34 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ) |
| 36 | 21 35 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) = ( ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 37 | 10 14 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 38 | 22 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → i ∈ ℂ ) |
| 39 | 2cn | ⊢ 2 ∈ ℂ | |
| 40 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 41 | 40 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 42 | 41 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 43 | 42 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 44 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) | |
| 45 | 39 43 44 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 46 | 39 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 2 ∈ ℂ ) |
| 47 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 48 | 47 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 49 | 48 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 50 | 42 49 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 51 | 38 46 50 | mul12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) = ( 2 · ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 52 | 38 42 49 | mul12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 53 | 52 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) = ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 54 | 51 53 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) = ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 55 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 56 | 22 49 55 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 57 | 42 56 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 58 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) → ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) | |
| 59 | 39 57 58 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 60 | 54 59 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 61 | 38 45 60 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) + ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) + ( i · ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 62 | mulcl | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ i ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · i ) ∈ ℂ ) | |
| 63 | 42 22 62 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) · i ) ∈ ℂ ) |
| 64 | 46 63 42 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) = ( 2 · ( ( ( ℜ ‘ 𝐴 ) · i ) · ( ℜ ‘ 𝐴 ) ) ) ) |
| 65 | 42 | sqvald | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) = ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) ) |
| 66 | 65 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) · i ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) · i ) ) |
| 67 | mulcom | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ i ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) · i ) = ( i · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 68 | 43 22 67 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) · i ) = ( i · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 69 | 42 42 38 | mul32d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) · i ) = ( ( ( ℜ ‘ 𝐴 ) · i ) · ( ℜ ‘ 𝐴 ) ) ) |
| 70 | 66 68 69 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ℜ ‘ 𝐴 ) · i ) · ( ℜ ‘ 𝐴 ) ) ) |
| 71 | 70 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( i · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) = ( 2 · ( ( ( ℜ ‘ 𝐴 ) · i ) · ( ℜ ‘ 𝐴 ) ) ) ) |
| 72 | 46 38 43 | mul12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( i · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) = ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 73 | 64 71 72 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) = ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 74 | ixi | ⊢ ( i · i ) = - 1 | |
| 75 | 74 | oveq1i | ⊢ ( ( i · i ) · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) = ( - 1 · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) |
| 76 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( 2 · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 77 | 39 49 76 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 78 | 77 42 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
| 79 | 38 38 78 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i · i ) · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) = ( i · ( i · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) ) ) |
| 80 | 75 79 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - 1 · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) = ( i · ( i · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) ) ) |
| 81 | 78 | mulm1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - 1 · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) = - ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) |
| 82 | 46 49 42 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) = ( 2 · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) ) ) |
| 83 | 49 42 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) = ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) |
| 84 | 83 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) ) = ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 85 | 82 84 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) = ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) = ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( i · ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) ) = ( i · ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 88 | 80 81 87 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) = ( i · ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 89 | 73 88 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) + - ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) = ( ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) + ( i · ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 90 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) · i ) ∈ ℂ ) → ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) ∈ ℂ ) | |
| 91 | 39 63 90 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) ∈ ℂ ) |
| 92 | 91 42 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
| 93 | 92 78 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) + - ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) − ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) ) |
| 94 | 61 89 93 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) + ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) − ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) ) |
| 95 | 49 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 96 | 59 95 | subcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 97 | 43 96 43 95 | add4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) + ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 98 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 99 | 98 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 100 | 99 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↑ 2 ) ) |
| 101 | binom2 | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) ↑ 2 ) ) ) | |
| 102 | 42 56 101 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 103 | sqmul | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 104 | 22 49 103 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i · ( ℑ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 105 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 106 | 105 | oveq1i | ⊢ ( ( i ↑ 2 ) · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( - 1 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) |
| 107 | 104 106 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i · ( ℑ ‘ 𝐴 ) ) ↑ 2 ) = ( - 1 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 108 | 95 | mulm1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - 1 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) |
| 109 | 107 108 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i · ( ℑ ‘ 𝐴 ) ) ↑ 2 ) = - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) |
| 110 | 109 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) + - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 111 | 43 59 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 112 | 111 95 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) + - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 113 | 102 110 112 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 114 | 43 59 95 | addsubassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 115 | 100 113 114 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 116 | absvalsq2 | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 117 | 116 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 118 | 115 117 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) + ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 119 | 43 | 2timesd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 120 | 59 95 | npcand | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 121 | 53 51 120 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 122 | 119 121 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) + ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 123 | 97 118 122 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) + ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 124 | 123 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = ( i · ( ( 2 · ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) + ( i · ( 2 · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 125 | 91 77 42 | subdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐴 ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℜ ‘ 𝐴 ) ) − ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐴 ) ) ) ) |
| 126 | 94 124 125 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐴 ) ) ) |
| 127 | 91 77 | subcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 128 | mulcom | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ i ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · i ) = ( i · ( ℜ ‘ 𝐴 ) ) ) | |
| 129 | 42 22 128 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) · i ) = ( i · ( ℜ ‘ 𝐴 ) ) ) |
| 130 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) | |
| 131 | eleq1 | ⊢ ( ( i · ( ℜ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) → ( ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) ∈ ℝ ) ) | |
| 132 | 48 131 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i · ( ℜ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) → ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) ) |
| 133 | rimul | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) → ( ℜ ‘ 𝐴 ) = 0 ) | |
| 134 | 41 132 133 | syl6an | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i · ( ℜ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) → ( ℜ ‘ 𝐴 ) = 0 ) ) |
| 135 | 134 | necon3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) ≠ 0 → ( i · ( ℜ ‘ 𝐴 ) ) ≠ ( ℑ ‘ 𝐴 ) ) ) |
| 136 | 130 135 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ℜ ‘ 𝐴 ) ) ≠ ( ℑ ‘ 𝐴 ) ) |
| 137 | 129 136 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) · i ) ≠ ( ℑ ‘ 𝐴 ) ) |
| 138 | 91 77 | subeq0ad | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) = 0 ↔ ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) = ( 2 · ( ℑ ‘ 𝐴 ) ) ) ) |
| 139 | 2ne0 | ⊢ 2 ≠ 0 | |
| 140 | 139 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 2 ≠ 0 ) |
| 141 | 63 49 46 140 | mulcand | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) = ( 2 · ( ℑ ‘ 𝐴 ) ) ↔ ( ( ℜ ‘ 𝐴 ) · i ) = ( ℑ ‘ 𝐴 ) ) ) |
| 142 | 138 141 | bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) = 0 ↔ ( ( ℜ ‘ 𝐴 ) · i ) = ( ℑ ‘ 𝐴 ) ) ) |
| 143 | 142 | necon3bid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) ≠ 0 ↔ ( ( ℜ ‘ 𝐴 ) · i ) ≠ ( ℑ ‘ 𝐴 ) ) ) |
| 144 | 137 143 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 145 | 127 42 144 130 | mulne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐴 ) ) ≠ 0 ) |
| 146 | 126 145 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ≠ 0 ) |
| 147 | oveq2 | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = 0 → ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = ( i · 0 ) ) | |
| 148 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 149 | 147 148 | eqtrdi | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = 0 → ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = 0 ) |
| 150 | 149 | necon3i | ⊢ ( ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ≠ 0 → ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ≠ 0 ) |
| 151 | 146 150 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ≠ 0 ) |
| 152 | 37 14 151 20 | divne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ≠ 0 ) |
| 153 | 36 152 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ≠ 0 ) |
| 154 | tanval3 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) − 1 ) / ( i · ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ) ) ) | |
| 155 | 8 153 154 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) − 1 ) / ( i · ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ) ) ) |
| 156 | 10 14 14 20 | divsubdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) − ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 157 | 33 34 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) − ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) − 1 ) ) |
| 158 | 156 157 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) − 1 ) = ( ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 159 | 36 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ) = ( i · ( ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 160 | 38 37 14 20 | divassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( i · ( ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 161 | 159 160 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ) = ( ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 162 | 158 161 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) − 1 ) / ( i · ( ( exp ‘ ( 2 · ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) + 1 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 163 | 10 14 | subcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 164 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) → ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ∈ ℂ ) | |
| 165 | 22 37 164 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ∈ ℂ ) |
| 166 | 163 165 14 146 20 | divcan7d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
| 167 | 115 117 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) − ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 168 | 43 96 95 | pnpcand | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) − ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 169 | 59 95 95 | subsub4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ( ℑ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 170 | 95 | 2timesd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ℑ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 171 | 170 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( 2 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ( ℑ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 172 | 46 63 49 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℑ ‘ 𝐴 ) ) = ( 2 · ( ( ( ℜ ‘ 𝐴 ) · i ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 173 | 42 38 49 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ℜ ‘ 𝐴 ) · i ) · ( ℑ ‘ 𝐴 ) ) = ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 174 | 173 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ( ℜ ‘ 𝐴 ) · i ) · ( ℑ ‘ 𝐴 ) ) ) = ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 175 | 172 174 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℑ ‘ 𝐴 ) ) ) |
| 176 | 49 | sqvald | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) = ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) |
| 177 | 176 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( 2 · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 178 | 46 49 49 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℑ ‘ 𝐴 ) ) = ( 2 · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 179 | 177 178 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 2 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℑ ‘ 𝐴 ) ) ) |
| 180 | 175 179 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( 2 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℑ ‘ 𝐴 ) ) − ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 181 | 91 77 49 | subdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℑ ‘ 𝐴 ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) · ( ℑ ‘ 𝐴 ) ) − ( ( 2 · ( ℑ ‘ 𝐴 ) ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 182 | 180 181 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( 2 · ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℑ ‘ 𝐴 ) ) ) |
| 183 | 169 171 182 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐴 ) ) ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) − ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℑ ‘ 𝐴 ) ) ) |
| 184 | 167 168 183 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℑ ‘ 𝐴 ) ) ) |
| 185 | 184 126 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) = ( ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℑ ‘ 𝐴 ) ) / ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐴 ) ) ) ) |
| 186 | 49 42 127 130 144 | divcan5d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℑ ‘ 𝐴 ) ) / ( ( ( 2 · ( ( ℜ ‘ 𝐴 ) · i ) ) − ( 2 · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐴 ) ) ) = ( ( ℑ ‘ 𝐴 ) / ( ℜ ‘ 𝐴 ) ) ) |
| 187 | 166 185 186 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( 𝐴 ↑ 2 ) − ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) / ( ( i · ( ( 𝐴 ↑ 2 ) + ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ℑ ‘ 𝐴 ) / ( ℜ ‘ 𝐴 ) ) ) |
| 188 | 155 162 187 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ 𝐴 ) / ( ℜ ‘ 𝐴 ) ) ) |