This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a number strictly between -upi / 2 and pi / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosq14gt0 | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 2 | elioore | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 ∈ ℝ ) | |
| 3 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) |
| 5 | neghalfpirx | ⊢ - ( π / 2 ) ∈ ℝ* | |
| 6 | 1 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 7 | elioo2 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ - ( π / 2 ) < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ - ( π / 2 ) < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) |
| 9 | 8 | simp3bi | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 < ( π / 2 ) ) |
| 10 | posdif | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( 𝐴 < ( π / 2 ) ↔ 0 < ( ( π / 2 ) − 𝐴 ) ) ) | |
| 11 | 2 1 10 | sylancl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( 𝐴 < ( π / 2 ) ↔ 0 < ( ( π / 2 ) − 𝐴 ) ) ) |
| 12 | 9 11 | mpbid | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( ( π / 2 ) − 𝐴 ) ) |
| 13 | picn | ⊢ π ∈ ℂ | |
| 14 | halfcl | ⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) | |
| 15 | 13 14 | ax-mp | ⊢ ( π / 2 ) ∈ ℂ |
| 16 | 15 | negcli | ⊢ - ( π / 2 ) ∈ ℂ |
| 17 | 13 15 | negsubi | ⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
| 18 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 19 | 13 15 15 18 | subaddrii | ⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 20 | 17 19 | eqtri | ⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
| 21 | 15 13 16 20 | subaddrii | ⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
| 22 | 8 | simp2bi | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → - ( π / 2 ) < 𝐴 ) |
| 23 | 21 22 | eqbrtrid | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( ( π / 2 ) − π ) < 𝐴 ) |
| 24 | pire | ⊢ π ∈ ℝ | |
| 25 | ltsub23 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( π / 2 ) − 𝐴 ) < π ↔ ( ( π / 2 ) − π ) < 𝐴 ) ) | |
| 26 | 1 24 25 | mp3an13 | ⊢ ( 𝐴 ∈ ℝ → ( ( ( π / 2 ) − 𝐴 ) < π ↔ ( ( π / 2 ) − π ) < 𝐴 ) ) |
| 27 | 2 26 | syl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( ( ( π / 2 ) − 𝐴 ) < π ↔ ( ( π / 2 ) − π ) < 𝐴 ) ) |
| 28 | 23 27 | mpbird | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) < π ) |
| 29 | 0xr | ⊢ 0 ∈ ℝ* | |
| 30 | 24 | rexri | ⊢ π ∈ ℝ* |
| 31 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ( π / 2 ) − 𝐴 ) ∈ ( 0 (,) π ) ↔ ( ( ( π / 2 ) − 𝐴 ) ∈ ℝ ∧ 0 < ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) < π ) ) ) | |
| 32 | 29 30 31 | mp2an | ⊢ ( ( ( π / 2 ) − 𝐴 ) ∈ ( 0 (,) π ) ↔ ( ( ( π / 2 ) − 𝐴 ) ∈ ℝ ∧ 0 < ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) < π ) ) |
| 33 | 4 12 28 32 | syl3anbrc | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ( 0 (,) π ) ) |
| 34 | sinq12gt0 | ⊢ ( ( ( π / 2 ) − 𝐴 ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) | |
| 35 | 33 34 | syl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) |
| 36 | 2 | recnd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
| 37 | sinhalfpim | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
| 39 | 35 38 | breqtrd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝐴 ) ) |