This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logeftb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
| 2 | dflog2 | ⊢ log = ◡ ( exp ↾ ran log ) | |
| 3 | 2 | fveq1i | ⊢ ( log ‘ 𝐴 ) = ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) |
| 4 | 3 | eqeq1i | ⊢ ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) |
| 5 | fvres | ⊢ ( 𝐵 ∈ ran log → ( ( exp ↾ ran log ) ‘ 𝐵 ) = ( exp ‘ 𝐵 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝐵 ∈ ran log → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 8 | eff1o2 | ⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) | |
| 9 | f1ocnvfvb | ⊢ ( ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) | |
| 10 | 8 9 | mp3an1 | ⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
| 11 | 7 10 | bitr3d | ⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
| 12 | 11 | ancoms | ⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ) → ( ( exp ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
| 13 | 4 12 | bitr4id | ⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 14 | 1 13 | sylanbr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 15 | 14 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |