This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of KanamoriPincus p. 421. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchpwdom | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) → ( 𝐴 ≺ 𝐵 ↔ 𝒫 𝐴 ≼ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝐴 ∈ GCH ) | |
| 2 | 1 | pwexd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝒫 𝐴 ∈ V ) |
| 3 | simpl3 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝐵 ∈ GCH ) | |
| 4 | djudoml | ⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝐵 ∈ GCH ) → 𝒫 𝐴 ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝒫 𝐴 ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) |
| 6 | domen2 | ⊢ ( 𝐵 ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 ≼ 𝐵 ↔ 𝒫 𝐴 ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) ) | |
| 7 | 5 6 | syl5ibrcom | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 8 | djucomen | ⊢ ( ( 𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V ) → ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) ) | |
| 9 | 3 2 8 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) ) |
| 10 | entr | ⊢ ( ( ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) ∧ ( 𝒫 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐵 ) → ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐵 ) | |
| 11 | 10 | ex | ⊢ ( ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) → ( ( 𝒫 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐵 → ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐵 ) ) |
| 12 | 9 11 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( ( 𝒫 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐵 → ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐵 ) ) |
| 13 | ensym | ⊢ ( ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≈ ( 𝐵 ⊔ 𝒫 𝐴 ) ) | |
| 14 | endom | ⊢ ( 𝒫 𝐵 ≈ ( 𝐵 ⊔ 𝒫 𝐴 ) → 𝒫 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ) |
| 16 | 12 15 | syl6 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( ( 𝒫 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ) ) |
| 17 | domsdomtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≺ 𝐵 ) → ω ≺ 𝐵 ) | |
| 18 | 17 | 3ad2antl1 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ω ≺ 𝐵 ) |
| 19 | sdomnsym | ⊢ ( ω ≺ 𝐵 → ¬ 𝐵 ≺ ω ) | |
| 20 | 18 19 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ¬ 𝐵 ≺ ω ) |
| 21 | isfinite | ⊢ ( 𝐵 ∈ Fin ↔ 𝐵 ≺ ω ) | |
| 22 | 20 21 | sylnibr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ¬ 𝐵 ∈ Fin ) |
| 23 | gchdjuidm | ⊢ ( ( 𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) | |
| 24 | 3 22 23 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) |
| 25 | pwen | ⊢ ( ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 → 𝒫 ( 𝐵 ⊔ 𝐵 ) ≈ 𝒫 𝐵 ) | |
| 26 | domen1 | ⊢ ( 𝒫 ( 𝐵 ⊔ 𝐵 ) ≈ 𝒫 𝐵 → ( 𝒫 ( 𝐵 ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ↔ 𝒫 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ) ) | |
| 27 | 24 25 26 | 3syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 ( 𝐵 ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ↔ 𝒫 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ) ) |
| 28 | pwdjudom | ⊢ ( 𝒫 ( 𝐵 ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) → 𝒫 𝐵 ≼ 𝒫 𝐴 ) | |
| 29 | canth2g | ⊢ ( 𝐵 ∈ GCH → 𝐵 ≺ 𝒫 𝐵 ) | |
| 30 | sdomdomtr | ⊢ ( ( 𝐵 ≺ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≺ 𝒫 𝐴 ) | |
| 31 | 30 | ex | ⊢ ( 𝐵 ≺ 𝒫 𝐵 → ( 𝒫 𝐵 ≼ 𝒫 𝐴 → 𝐵 ≺ 𝒫 𝐴 ) ) |
| 32 | 3 29 31 | 3syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐵 ≼ 𝒫 𝐴 → 𝐵 ≺ 𝒫 𝐴 ) ) |
| 33 | gchi | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → 𝐴 ∈ Fin ) | |
| 34 | 33 | 3expia | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ≺ 𝒫 𝐴 → 𝐴 ∈ Fin ) ) |
| 35 | 34 | 3ad2antl2 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ≺ 𝒫 𝐴 → 𝐴 ∈ Fin ) ) |
| 36 | isfinite | ⊢ ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω ) | |
| 37 | simpl1 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ω ≼ 𝐴 ) | |
| 38 | domnsym | ⊢ ( ω ≼ 𝐴 → ¬ 𝐴 ≺ ω ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ¬ 𝐴 ≺ ω ) |
| 40 | 39 | pm2.21d | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐴 ≺ ω → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 41 | 36 40 | biimtrid | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐴 ∈ Fin → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 42 | 32 35 41 | 3syld | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 43 | 28 42 | syl5 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 ( 𝐵 ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 44 | 27 43 | sylbird | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 45 | 16 44 | syld | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( ( 𝒫 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐵 → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 46 | djudoml | ⊢ ( ( 𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V ) → 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ) | |
| 47 | 3 2 46 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ) |
| 48 | domentr | ⊢ ( ( 𝐵 ≼ ( 𝐵 ⊔ 𝒫 𝐴 ) ∧ ( 𝐵 ⊔ 𝒫 𝐴 ) ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) ) → 𝐵 ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) | |
| 49 | 47 9 48 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝐵 ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) |
| 50 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 51 | 50 | adantl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
| 52 | pwdom | ⊢ ( 𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵 ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝒫 𝐴 ≼ 𝒫 𝐵 ) |
| 54 | djudom1 | ⊢ ( ( 𝒫 𝐴 ≼ 𝒫 𝐵 ∧ 𝐵 ∈ GCH ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝐵 ) ) | |
| 55 | 53 3 54 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝐵 ) ) |
| 56 | sdomdom | ⊢ ( 𝐵 ≺ 𝒫 𝐵 → 𝐵 ≼ 𝒫 𝐵 ) | |
| 57 | 3 29 56 | 3syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝐵 ≼ 𝒫 𝐵 ) |
| 58 | 3 | pwexd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝒫 𝐵 ∈ V ) |
| 59 | djudom2 | ⊢ ( ( 𝐵 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V ) → ( 𝒫 𝐵 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ) | |
| 60 | 57 58 59 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐵 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ) |
| 61 | domtr | ⊢ ( ( ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝐵 ) ∧ ( 𝒫 𝐵 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ) | |
| 62 | 55 60 61 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ) |
| 63 | pwdju1 | ⊢ ( 𝐵 ∈ GCH → ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ≈ 𝒫 ( 𝐵 ⊔ 1o ) ) | |
| 64 | 3 63 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ≈ 𝒫 ( 𝐵 ⊔ 1o ) ) |
| 65 | gchdju1 | ⊢ ( ( 𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin ) → ( 𝐵 ⊔ 1o ) ≈ 𝐵 ) | |
| 66 | 3 22 65 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ⊔ 1o ) ≈ 𝐵 ) |
| 67 | pwen | ⊢ ( ( 𝐵 ⊔ 1o ) ≈ 𝐵 → 𝒫 ( 𝐵 ⊔ 1o ) ≈ 𝒫 𝐵 ) | |
| 68 | 66 67 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝒫 ( 𝐵 ⊔ 1o ) ≈ 𝒫 𝐵 ) |
| 69 | entr | ⊢ ( ( ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ≈ 𝒫 ( 𝐵 ⊔ 1o ) ∧ 𝒫 ( 𝐵 ⊔ 1o ) ≈ 𝒫 𝐵 ) → ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ≈ 𝒫 𝐵 ) | |
| 70 | 64 68 69 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ≈ 𝒫 𝐵 ) |
| 71 | domentr | ⊢ ( ( ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ∧ ( 𝒫 𝐵 ⊔ 𝒫 𝐵 ) ≈ 𝒫 𝐵 ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐵 ) | |
| 72 | 62 70 71 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐵 ) |
| 73 | gchor | ⊢ ( ( ( 𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin ) ∧ ( 𝐵 ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ∧ ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐵 ) ) → ( 𝐵 ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) ∨ ( 𝒫 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐵 ) ) | |
| 74 | 3 22 49 72 73 | syl22anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ≈ ( 𝒫 𝐴 ⊔ 𝐵 ) ∨ ( 𝒫 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐵 ) ) |
| 75 | 7 45 74 | mpjaod | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) ∧ 𝐴 ≺ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) |
| 76 | 75 | ex | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) → ( 𝐴 ≺ 𝐵 → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 77 | reldom | ⊢ Rel ≼ | |
| 78 | 77 | brrelex1i | ⊢ ( 𝒫 𝐴 ≼ 𝐵 → 𝒫 𝐴 ∈ V ) |
| 79 | pwexb | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) | |
| 80 | canth2g | ⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) | |
| 81 | 79 80 | sylbir | ⊢ ( 𝒫 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) |
| 82 | 78 81 | syl | ⊢ ( 𝒫 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝒫 𝐴 ) |
| 83 | sdomdomtr | ⊢ ( ( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
| 84 | 82 83 | mpancom | ⊢ ( 𝒫 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵 ) |
| 85 | 76 84 | impbid1 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH ) → ( 𝐴 ≺ 𝐵 ↔ 𝒫 𝐴 ≼ 𝐵 ) ) |