This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchdju1 | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | ⊢ 1o ∈ ω | |
| 2 | 1 | a1i | ⊢ ( ¬ 𝐴 ∈ Fin → 1o ∈ ω ) |
| 3 | djudoml | ⊢ ( ( 𝐴 ∈ GCH ∧ 1o ∈ ω ) → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐴 ∈ Fin ) | |
| 6 | nnfi | ⊢ ( 1o ∈ ω → 1o ∈ Fin ) | |
| 7 | 1 6 | mp1i | ⊢ ( ¬ 𝐴 ∈ Fin → 1o ∈ Fin ) |
| 8 | fidomtri2 | ⊢ ( ( 𝐴 ∈ GCH ∧ 1o ∈ Fin ) → ( 𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴 ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴 ) ) |
| 10 | 1 6 | mp1i | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 1o ∈ Fin ) |
| 11 | domfi | ⊢ ( ( 1o ∈ Fin ∧ 𝐴 ≼ 1o ) → 𝐴 ∈ Fin ) | |
| 12 | 11 | ex | ⊢ ( 1o ∈ Fin → ( 𝐴 ≼ 1o → 𝐴 ∈ Fin ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 1o → 𝐴 ∈ Fin ) ) |
| 14 | 9 13 | sylbird | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( ¬ 1o ≺ 𝐴 → 𝐴 ∈ Fin ) ) |
| 15 | 5 14 | mt3d | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 1o ≺ 𝐴 ) |
| 16 | canthp1 | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) |
| 18 | 4 17 | jca | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ ( 𝐴 ⊔ 1o ) ∧ ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) ) |
| 19 | gchen1 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ ( 𝐴 ⊔ 1o ) ∧ ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) ) → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) | |
| 20 | 18 19 | mpdan | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 21 | 20 | ensymd | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |