This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If ( alephA ) is a GCH-set and its powerset is well-orderable, then the successor aleph ( alephsuc A ) is equinumerous to the powerset of ( alephA ) . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchaleph | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsucpw2 | ⊢ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) | |
| 2 | alephon | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ On | |
| 3 | onenon | ⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On → ( ℵ ‘ suc 𝐴 ) ∈ dom card ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ dom card |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
| 6 | domtri2 | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ∈ dom card ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 8 | 1 7 | mpbiri | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ) |
| 9 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 10 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → 𝐴 ∈ On ) | |
| 11 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 13 | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) | |
| 14 | 9 12 13 | mpsyl | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 15 | domnsym | ⊢ ( ω ≼ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ω ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ω ) |
| 17 | isfinite | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ Fin ↔ ( ℵ ‘ 𝐴 ) ≺ ω ) | |
| 18 | 16 17 | sylnibr | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ¬ ( ℵ ‘ 𝐴 ) ∈ Fin ) |
| 19 | simp2 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ 𝐴 ) ∈ GCH ) | |
| 20 | alephordilem1 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 22 | gchi | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ∧ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ∈ Fin ) | |
| 23 | 22 | 3expia | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ∈ Fin ) ) |
| 24 | 19 21 23 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ∈ Fin ) ) |
| 25 | 18 24 | mtod | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ¬ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) |
| 26 | domtri2 | ⊢ ( ( 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ( ℵ ‘ suc 𝐴 ) ∈ dom card ) → ( 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ↔ ¬ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) | |
| 27 | 5 4 26 | sylancl | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ↔ ¬ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
| 28 | 25 27 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ) |
| 29 | sbth | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) | |
| 30 | 8 28 29 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) |