This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchi | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → 𝐴 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ⊢ Rel ≺ | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐵 ≺ 𝒫 𝐴 → 𝐵 ∈ V ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → 𝐵 ∈ V ) |
| 4 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝐵 ) ) | |
| 5 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ≺ 𝒫 𝐴 ↔ 𝐵 ≺ 𝒫 𝐴 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ↔ ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) ) ) |
| 7 | 6 | spcegv | ⊢ ( 𝐵 ∈ V → ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → ∃ 𝑥 ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 8 | 3 7 | mpcom | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → ∃ 𝑥 ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 9 | df-ex | ⊢ ( ∃ 𝑥 ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ↔ ¬ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → ¬ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 11 | elgch | ⊢ ( 𝐴 ∈ GCH → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) | |
| 12 | 11 | ibi | ⊢ ( 𝐴 ∈ GCH → ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 13 | 12 | orcomd | ⊢ ( 𝐴 ∈ GCH → ( ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ∨ 𝐴 ∈ Fin ) ) |
| 14 | 13 | ord | ⊢ ( 𝐴 ∈ GCH → ( ¬ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) → 𝐴 ∈ Fin ) ) |
| 15 | 10 14 | syl5 | ⊢ ( 𝐴 ∈ GCH → ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → 𝐴 ∈ Fin ) ) |
| 16 | 15 | 3impib | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → 𝐴 ∈ Fin ) |