This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance is asymmetric. Theorem 21(ii) of Suppes p. 97. (Contributed by NM, 8-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomnsym | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) | |
| 2 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 3 | sdomdom | ⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 4 | sbth | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 6 | 1 5 | mtand | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |