This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A <_ B <_ ~P A , and A is an infinite GCH-set, then either A = B or B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchor | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → 𝐵 ≼ 𝒫 𝐴 ) | |
| 2 | brdom2 | ⊢ ( 𝐵 ≼ 𝒫 𝐴 ↔ ( 𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴 ) ) |
| 4 | gchen1 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) ) → 𝐴 ≈ 𝐵 ) | |
| 5 | 4 | expr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 ≺ 𝒫 𝐴 → 𝐴 ≈ 𝐵 ) ) |
| 6 | 5 | adantrr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐵 ≺ 𝒫 𝐴 → 𝐴 ≈ 𝐵 ) ) |
| 7 | 6 | orim1d | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → ( ( 𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴 ) → ( 𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴 ) ) ) |
| 8 | 3 7 | mpd | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → ( 𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴 ) ) |