This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdom | ⊢ ( 𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ⊢ ( 𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅ ) | |
| 2 | 1 | breq1d | ⊢ ( 𝐴 = ∅ → ( 𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵 ) ) |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 5 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ≼ 𝐵 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 7 | 6 | biimpar | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅ ) → ∅ ≺ 𝐴 ) |
| 8 | simpl | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≼ 𝐵 ) | |
| 9 | fodomr | ⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → ∃ 𝑓 𝑓 : 𝐵 –onto→ 𝐴 ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑓 𝑓 : 𝐵 –onto→ 𝐴 ) |
| 11 | vex | ⊢ 𝑓 ∈ V | |
| 12 | fopwdom | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐵 –onto→ 𝐴 ) → 𝒫 𝐴 ≼ 𝒫 𝐵 ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝑓 : 𝐵 –onto→ 𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵 ) |
| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐵 –onto→ 𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵 ) |
| 15 | 10 14 | syl | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅ ) → 𝒫 𝐴 ≼ 𝒫 𝐵 ) |
| 16 | 3 | brrelex2i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 17 | 16 | pwexd | ⊢ ( 𝐴 ≼ 𝐵 → 𝒫 𝐵 ∈ V ) |
| 18 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
| 19 | 18 | sspwi | ⊢ 𝒫 ∅ ⊆ 𝒫 𝐵 |
| 20 | ssdomg | ⊢ ( 𝒫 𝐵 ∈ V → ( 𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵 ) ) | |
| 21 | 17 19 20 | mpisyl | ⊢ ( 𝐴 ≼ 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵 ) |
| 22 | 2 15 21 | pm2.61ne | ⊢ ( 𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵 ) |