This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of KanamoriPincus p. 421. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchpwdom | |- ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) -> ( A ~< B <-> ~P A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> A e. GCH ) |
|
| 2 | 1 | pwexd | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A e. _V ) |
| 3 | simpl3 | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B e. GCH ) |
|
| 4 | djudoml | |- ( ( ~P A e. _V /\ B e. GCH ) -> ~P A ~<_ ( ~P A |_| B ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ ( ~P A |_| B ) ) |
| 6 | domen2 | |- ( B ~~ ( ~P A |_| B ) -> ( ~P A ~<_ B <-> ~P A ~<_ ( ~P A |_| B ) ) ) |
|
| 7 | 5 6 | syl5ibrcom | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~~ ( ~P A |_| B ) -> ~P A ~<_ B ) ) |
| 8 | djucomen | |- ( ( B e. GCH /\ ~P A e. _V ) -> ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) |
|
| 9 | 3 2 8 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) |
| 10 | entr | |- ( ( ( B |_| ~P A ) ~~ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~~ ~P B ) -> ( B |_| ~P A ) ~~ ~P B ) |
|
| 11 | 10 | ex | |- ( ( B |_| ~P A ) ~~ ( ~P A |_| B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ( B |_| ~P A ) ~~ ~P B ) ) |
| 12 | 9 11 | syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ( B |_| ~P A ) ~~ ~P B ) ) |
| 13 | ensym | |- ( ( B |_| ~P A ) ~~ ~P B -> ~P B ~~ ( B |_| ~P A ) ) |
|
| 14 | endom | |- ( ~P B ~~ ( B |_| ~P A ) -> ~P B ~<_ ( B |_| ~P A ) ) |
|
| 15 | 13 14 | syl | |- ( ( B |_| ~P A ) ~~ ~P B -> ~P B ~<_ ( B |_| ~P A ) ) |
| 16 | 12 15 | syl6 | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ~P B ~<_ ( B |_| ~P A ) ) ) |
| 17 | domsdomtr | |- ( ( _om ~<_ A /\ A ~< B ) -> _om ~< B ) |
|
| 18 | 17 | 3ad2antl1 | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> _om ~< B ) |
| 19 | sdomnsym | |- ( _om ~< B -> -. B ~< _om ) |
|
| 20 | 18 19 | syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. B ~< _om ) |
| 21 | isfinite | |- ( B e. Fin <-> B ~< _om ) |
|
| 22 | 20 21 | sylnibr | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. B e. Fin ) |
| 23 | gchdjuidm | |- ( ( B e. GCH /\ -. B e. Fin ) -> ( B |_| B ) ~~ B ) |
|
| 24 | 3 22 23 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| B ) ~~ B ) |
| 25 | pwen | |- ( ( B |_| B ) ~~ B -> ~P ( B |_| B ) ~~ ~P B ) |
|
| 26 | domen1 | |- ( ~P ( B |_| B ) ~~ ~P B -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) <-> ~P B ~<_ ( B |_| ~P A ) ) ) |
|
| 27 | 24 25 26 | 3syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) <-> ~P B ~<_ ( B |_| ~P A ) ) ) |
| 28 | pwdjudom | |- ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) -> ~P B ~<_ ~P A ) |
|
| 29 | canth2g | |- ( B e. GCH -> B ~< ~P B ) |
|
| 30 | sdomdomtr | |- ( ( B ~< ~P B /\ ~P B ~<_ ~P A ) -> B ~< ~P A ) |
|
| 31 | 30 | ex | |- ( B ~< ~P B -> ( ~P B ~<_ ~P A -> B ~< ~P A ) ) |
| 32 | 3 29 31 | 3syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ~P A -> B ~< ~P A ) ) |
| 33 | gchi | |- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |
|
| 34 | 33 | 3expia | |- ( ( A e. GCH /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) |
| 35 | 34 | 3ad2antl2 | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) |
| 36 | isfinite | |- ( A e. Fin <-> A ~< _om ) |
|
| 37 | simpl1 | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> _om ~<_ A ) |
|
| 38 | domnsym | |- ( _om ~<_ A -> -. A ~< _om ) |
|
| 39 | 37 38 | syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. A ~< _om ) |
| 40 | 39 | pm2.21d | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( A ~< _om -> ~P A ~<_ B ) ) |
| 41 | 36 40 | biimtrid | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( A e. Fin -> ~P A ~<_ B ) ) |
| 42 | 32 35 41 | 3syld | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ~P A -> ~P A ~<_ B ) ) |
| 43 | 28 42 | syl5 | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) -> ~P A ~<_ B ) ) |
| 44 | 27 43 | sylbird | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ( B |_| ~P A ) -> ~P A ~<_ B ) ) |
| 45 | 16 44 | syld | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ~P A ~<_ B ) ) |
| 46 | djudoml | |- ( ( B e. GCH /\ ~P A e. _V ) -> B ~<_ ( B |_| ~P A ) ) |
|
| 47 | 3 2 46 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ( B |_| ~P A ) ) |
| 48 | domentr | |- ( ( B ~<_ ( B |_| ~P A ) /\ ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) -> B ~<_ ( ~P A |_| B ) ) |
|
| 49 | 47 9 48 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ( ~P A |_| B ) ) |
| 50 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 51 | 50 | adantl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> A ~<_ B ) |
| 52 | pwdom | |- ( A ~<_ B -> ~P A ~<_ ~P B ) |
|
| 53 | 51 52 | syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ ~P B ) |
| 54 | djudom1 | |- ( ( ~P A ~<_ ~P B /\ B e. GCH ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| B ) ) |
|
| 55 | 53 3 54 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| B ) ) |
| 56 | sdomdom | |- ( B ~< ~P B -> B ~<_ ~P B ) |
|
| 57 | 3 29 56 | 3syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ~P B ) |
| 58 | 3 | pwexd | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P B e. _V ) |
| 59 | djudom2 | |- ( ( B ~<_ ~P B /\ ~P B e. _V ) -> ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
|
| 60 | 57 58 59 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
| 61 | domtr | |- ( ( ( ~P A |_| B ) ~<_ ( ~P B |_| B ) /\ ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
|
| 62 | 55 60 61 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
| 63 | pwdju1 | |- ( B e. GCH -> ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) ) |
|
| 64 | 3 63 | syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) ) |
| 65 | gchdju1 | |- ( ( B e. GCH /\ -. B e. Fin ) -> ( B |_| 1o ) ~~ B ) |
|
| 66 | 3 22 65 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| 1o ) ~~ B ) |
| 67 | pwen | |- ( ( B |_| 1o ) ~~ B -> ~P ( B |_| 1o ) ~~ ~P B ) |
|
| 68 | 66 67 | syl | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P ( B |_| 1o ) ~~ ~P B ) |
| 69 | entr | |- ( ( ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) /\ ~P ( B |_| 1o ) ~~ ~P B ) -> ( ~P B |_| ~P B ) ~~ ~P B ) |
|
| 70 | 64 68 69 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| ~P B ) ~~ ~P B ) |
| 71 | domentr | |- ( ( ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) /\ ( ~P B |_| ~P B ) ~~ ~P B ) -> ( ~P A |_| B ) ~<_ ~P B ) |
|
| 72 | 62 70 71 | syl2anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ~P B ) |
| 73 | gchor | |- ( ( ( B e. GCH /\ -. B e. Fin ) /\ ( B ~<_ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~<_ ~P B ) ) -> ( B ~~ ( ~P A |_| B ) \/ ( ~P A |_| B ) ~~ ~P B ) ) |
|
| 74 | 3 22 49 72 73 | syl22anc | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~~ ( ~P A |_| B ) \/ ( ~P A |_| B ) ~~ ~P B ) ) |
| 75 | 7 45 74 | mpjaod | |- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ B ) |
| 76 | 75 | ex | |- ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) -> ( A ~< B -> ~P A ~<_ B ) ) |
| 77 | reldom | |- Rel ~<_ |
|
| 78 | 77 | brrelex1i | |- ( ~P A ~<_ B -> ~P A e. _V ) |
| 79 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
| 80 | canth2g | |- ( A e. _V -> A ~< ~P A ) |
|
| 81 | 79 80 | sylbir | |- ( ~P A e. _V -> A ~< ~P A ) |
| 82 | 78 81 | syl | |- ( ~P A ~<_ B -> A ~< ~P A ) |
| 83 | sdomdomtr | |- ( ( A ~< ~P A /\ ~P A ~<_ B ) -> A ~< B ) |
|
| 84 | 82 83 | mpancom | |- ( ~P A ~<_ B -> A ~< B ) |
| 85 | 76 84 | impbid1 | |- ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) -> ( A ~< B <-> ~P A ~<_ B ) ) |