This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fz1iso . (Contributed by Mario Carneiro, 2-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fz1iso.1 | ⊢ 𝐺 = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) | |
| fz1iso.2 | ⊢ 𝐵 = ( ℕ ∩ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) | ||
| fz1iso.3 | ⊢ 𝐶 = ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) | ||
| fz1iso.4 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| Assertion | fz1isolem | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1iso.1 | ⊢ 𝐺 = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) | |
| 2 | fz1iso.2 | ⊢ 𝐵 = ( ℕ ∩ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) | |
| 3 | fz1iso.3 | ⊢ 𝐶 = ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) | |
| 4 | fz1iso.4 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 5 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 8 | 1z | ⊢ 1 ∈ ℤ | |
| 9 | 8 1 | om2uzisoi | ⊢ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 1 ) ) |
| 10 | isoeq5 | ⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → ( 𝐺 Isom E , < ( ω , ℕ ) ↔ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 1 ) ) ) ) | |
| 11 | 9 10 | mpbiri | ⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → 𝐺 Isom E , < ( ω , ℕ ) ) |
| 12 | 7 11 | ax-mp | ⊢ 𝐺 Isom E , < ( ω , ℕ ) |
| 13 | isocnv | ⊢ ( 𝐺 Isom E , < ( ω , ℕ ) → ◡ 𝐺 Isom < , E ( ℕ , ω ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ◡ 𝐺 Isom < , E ( ℕ , ω ) |
| 15 | nn0p1nn | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ ℕ ) | |
| 16 | fvex | ⊢ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ∈ V | |
| 17 | 16 | epini | ⊢ ( ◡ E “ { ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) } ) = ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 18 | 17 | ineq2i | ⊢ ( ω ∩ ( ◡ E “ { ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) } ) ) = ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 19 | 3 18 | eqtr4i | ⊢ 𝐶 = ( ω ∩ ( ◡ E “ { ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) } ) ) |
| 20 | 2 19 | isoini2 | ⊢ ( ( ◡ 𝐺 Isom < , E ( ℕ , ω ) ∧ ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ ℕ ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ) |
| 21 | 14 15 20 | sylancr | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ) |
| 22 | 6 21 | syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ) |
| 23 | nnz | ⊢ ( 𝑓 ∈ ℕ → 𝑓 ∈ ℤ ) | |
| 24 | 6 | nn0zd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 25 | eluz | ⊢ ( ( 𝑓 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ↔ 𝑓 ≤ ( ♯ ‘ 𝐴 ) ) ) | |
| 26 | 23 24 25 | syl2anr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ↔ 𝑓 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 27 | zleltp1 | ⊢ ( ( 𝑓 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( 𝑓 ≤ ( ♯ ‘ 𝐴 ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) | |
| 28 | 23 24 27 | syl2anr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( 𝑓 ≤ ( ♯ ‘ 𝐴 ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 29 | ovex | ⊢ ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ V | |
| 30 | vex | ⊢ 𝑓 ∈ V | |
| 31 | 30 | eliniseg | ⊢ ( ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ V → ( 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 32 | 29 31 | ax-mp | ⊢ ( 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 33 | 28 32 | bitr4di | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( 𝑓 ≤ ( ♯ ‘ 𝐴 ) ↔ 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) ) |
| 34 | 26 33 | bitr2d | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ↔ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) |
| 35 | 34 | pm5.32da | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( 𝑓 ∈ ℕ ∧ 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) ↔ ( 𝑓 ∈ ℕ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) ) |
| 36 | 2 | elin2 | ⊢ ( 𝑓 ∈ 𝐵 ↔ ( 𝑓 ∈ ℕ ∧ 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) ) |
| 37 | elfzuzb | ⊢ ( 𝑓 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑓 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) | |
| 38 | elnnuz | ⊢ ( 𝑓 ∈ ℕ ↔ 𝑓 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 39 | 38 | anbi1i | ⊢ ( ( 𝑓 ∈ ℕ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ↔ ( 𝑓 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) |
| 40 | 37 39 | bitr4i | ⊢ ( 𝑓 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑓 ∈ ℕ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) |
| 41 | 35 36 40 | 3bitr4g | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑓 ∈ 𝐵 ↔ 𝑓 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
| 42 | 41 | eqrdv | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐵 = ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 43 | isoeq4 | ⊢ ( 𝐵 = ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ) ) |
| 45 | 22 44 | mpbid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ) |
| 46 | 4 | oion | ⊢ ( 𝐴 ∈ Fin → dom 𝑂 ∈ On ) |
| 47 | 46 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ On ) |
| 48 | simpr | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 49 | wofi | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 We 𝐴 ) | |
| 50 | 4 | oien | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → dom 𝑂 ≈ 𝐴 ) |
| 51 | 48 49 50 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ≈ 𝐴 ) |
| 52 | enfii | ⊢ ( ( 𝐴 ∈ Fin ∧ dom 𝑂 ≈ 𝐴 ) → dom 𝑂 ∈ Fin ) | |
| 53 | 48 51 52 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ Fin ) |
| 54 | 47 53 | elind | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ ( On ∩ Fin ) ) |
| 55 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 56 | 54 55 | eleqtrrdi | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ ω ) |
| 57 | eqid | ⊢ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) | |
| 58 | 0z | ⊢ 0 ∈ ℤ | |
| 59 | 1 57 8 58 | uzrdgxfr | ⊢ ( dom 𝑂 ∈ ω → ( 𝐺 ‘ dom 𝑂 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + ( 1 − 0 ) ) ) |
| 60 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 61 | 60 | oveq2i | ⊢ ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + ( 1 − 0 ) ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) |
| 62 | 59 61 | eqtrdi | ⊢ ( dom 𝑂 ∈ ω → ( 𝐺 ‘ dom 𝑂 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) ) |
| 63 | 56 62 | syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐺 ‘ dom 𝑂 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) ) |
| 64 | 51 | ensymd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ≈ dom 𝑂 ) |
| 65 | cardennn | ⊢ ( ( 𝐴 ≈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → ( card ‘ 𝐴 ) = dom 𝑂 ) | |
| 66 | 64 56 65 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( card ‘ 𝐴 ) = dom 𝑂 ) |
| 67 | 66 | fveq2d | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) ) |
| 68 | 57 | hashgval | ⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 70 | 67 69 | eqtr3d | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) = ( ♯ ‘ 𝐴 ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 72 | 63 71 | eqtrd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐺 ‘ dom 𝑂 ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 73 | 72 | fveq2d | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ dom 𝑂 ) ) = ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 74 | isof1o | ⊢ ( 𝐺 Isom E , < ( ω , ℕ ) → 𝐺 : ω –1-1-onto→ ℕ ) | |
| 75 | 12 74 | ax-mp | ⊢ 𝐺 : ω –1-1-onto→ ℕ |
| 76 | f1ocnvfv1 | ⊢ ( ( 𝐺 : ω –1-1-onto→ ℕ ∧ dom 𝑂 ∈ ω ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ dom 𝑂 ) ) = dom 𝑂 ) | |
| 77 | 75 56 76 | sylancr | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ dom 𝑂 ) ) = dom 𝑂 ) |
| 78 | 73 77 | eqtr3d | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) = dom 𝑂 ) |
| 79 | 78 | ineq2d | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) = ( ω ∩ dom 𝑂 ) ) |
| 80 | ordom | ⊢ Ord ω | |
| 81 | ordelss | ⊢ ( ( Ord ω ∧ dom 𝑂 ∈ ω ) → dom 𝑂 ⊆ ω ) | |
| 82 | 80 56 81 | sylancr | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ⊆ ω ) |
| 83 | sseqin2 | ⊢ ( dom 𝑂 ⊆ ω ↔ ( ω ∩ dom 𝑂 ) = dom 𝑂 ) | |
| 84 | 82 83 | sylib | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ω ∩ dom 𝑂 ) = dom 𝑂 ) |
| 85 | 79 84 | eqtrd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) = dom 𝑂 ) |
| 86 | 3 85 | eqtrid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐶 = dom 𝑂 ) |
| 87 | isoeq5 | ⊢ ( 𝐶 = dom 𝑂 → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ) ) | |
| 88 | 86 87 | syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ) ) |
| 89 | 45 88 | mpbid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ) |
| 90 | 4 | oiiso | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
| 91 | 48 49 90 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
| 92 | isotr | ⊢ ( ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ∧ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 93 | 89 91 92 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 94 | isof1o | ⊢ ( ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 95 | f1of | ⊢ ( ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 96 | 93 94 95 | 3syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 97 | fzfid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin ) | |
| 98 | 96 97 | fexd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) ∈ V ) |
| 99 | isoeq1 | ⊢ ( 𝑓 = ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) → ( 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) | |
| 100 | 98 93 99 | spcedv | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |