This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004) (Proof shortened by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isotr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑆 , 𝑇 ( 𝐵 , 𝐶 ) ) → ( 𝐺 ∘ 𝐻 ) Isom 𝑅 , 𝑇 ( 𝐴 , 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐶 ) | |
| 2 | simpl | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | f1oco | ⊢ ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐺 ∘ 𝐻 ) : 𝐴 –1-1-onto→ 𝐶 ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) → ( 𝐺 ∘ 𝐻 ) : 𝐴 –1-1-onto→ 𝐶 ) |
| 5 | f1of | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 7 | simprl | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 8 | 6 7 | ffvelcdmd | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 9 | simprr | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 10 | 6 9 | ffvelcdmd | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) |
| 11 | simplrr | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) | |
| 12 | breq1 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑥 ) → ( 𝑧 𝑆 𝑤 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 𝑤 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑥 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 14 | 13 | breq1d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) |
| 15 | 12 14 | bibi12d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑥 ) → ( ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ↔ ( ( 𝐻 ‘ 𝑥 ) 𝑆 𝑤 ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 16 | breq2 | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑦 ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 𝑤 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) | |
| 17 | fveq2 | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑦 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) | |
| 18 | 17 | breq2d | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑦 ) → ( ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 19 | 16 18 | bibi12d | ⊢ ( 𝑤 = ( 𝐻 ‘ 𝑦 ) → ( ( ( 𝐻 ‘ 𝑥 ) 𝑆 𝑤 ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ↔ ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ) |
| 20 | 15 19 | rspc2va | ⊢ ( ( ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 21 | 8 10 11 20 | syl21anc | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 22 | fvco3 | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 23 | 6 7 22 | syl2anc | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 24 | fvco3 | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) | |
| 25 | 6 9 24 | syl2anc | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) |
| 26 | 23 25 | breq12d | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑇 ( 𝐺 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 27 | 21 26 | bitr4d | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) |
| 28 | 27 | bibi2d | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 29 | 28 | 2ralbidva | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 30 | 29 | biimpd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 31 | 30 | impancom | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) |
| 33 | 4 32 | jca | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) → ( ( 𝐺 ∘ 𝐻 ) : 𝐴 –1-1-onto→ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) ) |
| 34 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 35 | df-isom | ⊢ ( 𝐺 Isom 𝑆 , 𝑇 ( 𝐵 , 𝐶 ) ↔ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) | |
| 36 | 34 35 | anbi12i | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑆 , 𝑇 ( 𝐵 , 𝐶 ) ) ↔ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝐺 : 𝐵 –1-1-onto→ 𝐶 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( 𝐺 ‘ 𝑧 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 37 | df-isom | ⊢ ( ( 𝐺 ∘ 𝐻 ) Isom 𝑅 , 𝑇 ( 𝐴 , 𝐶 ) ↔ ( ( 𝐺 ∘ 𝐻 ) : 𝐴 –1-1-onto→ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) 𝑇 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑦 ) ) ) ) | |
| 38 | 33 36 37 | 3imtr4i | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑆 , 𝑇 ( 𝐵 , 𝐶 ) ) → ( 𝐺 ∘ 𝐻 ) Isom 𝑅 , 𝑇 ( 𝐴 , 𝐶 ) ) |