This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoeq4 | ⊢ ( 𝐴 = 𝐶 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2 | ⊢ ( 𝐴 = 𝐶 → ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐻 : 𝐶 –1-1-onto→ 𝐵 ) ) | |
| 2 | raleq | ⊢ ( 𝐴 = 𝐶 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 3 | 2 | raleqbi1dv | ⊢ ( 𝐴 = 𝐶 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( 𝐴 = 𝐶 → ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐻 : 𝐶 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ) |
| 5 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 6 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ↔ ( 𝐻 : 𝐶 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 7 | 4 5 6 | 3bitr4g | ⊢ ( 𝐴 = 𝐶 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ) ) |