This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐴 ) ‘ 𝐶 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐴 ) ‘ 𝐶 ) ) |
| 4 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 5 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ‘ 𝐶 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 7 | fvresi | ⊢ ( 𝐶 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝐶 ) = 𝐶 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝐶 ) = 𝐶 ) |
| 9 | 3 6 8 | 3eqtr3d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |