This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isoini2.1 | ⊢ 𝐶 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| isoini2.2 | ⊢ 𝐷 = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑋 ) } ) ) | ||
| Assertion | isoini2 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 ↾ 𝐶 ) Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoini2.1 | ⊢ 𝐶 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 2 | isoini2.2 | ⊢ 𝐷 = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑋 ) } ) ) | |
| 3 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 4 | f1of1 | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –1-1→ 𝐵 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
| 7 | inss1 | ⊢ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ 𝐴 | |
| 8 | 1 7 | eqsstri | ⊢ 𝐶 ⊆ 𝐴 |
| 9 | f1ores | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐻 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐻 “ 𝐶 ) ) | |
| 10 | 6 8 9 | sylancl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐻 “ 𝐶 ) ) |
| 11 | isoini | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑋 ) } ) ) ) | |
| 12 | 1 | imaeq2i | ⊢ ( 𝐻 “ 𝐶 ) = ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 13 | 11 12 2 | 3eqtr4g | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 “ 𝐶 ) = 𝐷 ) |
| 14 | 13 | f1oeq3d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐻 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐻 “ 𝐶 ) ↔ ( 𝐻 ↾ 𝐶 ) : 𝐶 –1-1-onto→ 𝐷 ) ) |
| 15 | 10 14 | mpbid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 ↾ 𝐶 ) : 𝐶 –1-1-onto→ 𝐷 ) |
| 16 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 17 | 16 | simprbi | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 19 | ssralv | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 20 | 19 | ralimdv | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 21 | 8 18 20 | mpsyl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 22 | ssralv | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 23 | 8 21 22 | mpsyl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 24 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) | |
| 25 | fvres | ⊢ ( 𝑦 ∈ 𝐶 → ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 26 | 24 25 | breqan12d | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 27 | 26 | bibi2d | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 28 | 27 | ralbidva | ⊢ ( 𝑥 ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 29 | 28 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 30 | 23 29 | sylibr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑦 ) ) ) |
| 31 | df-isom | ⊢ ( ( 𝐻 ↾ 𝐶 ) Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ↔ ( ( 𝐻 ↾ 𝐶 ) : 𝐶 –1-1-onto→ 𝐷 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑥 ) 𝑆 ( ( 𝐻 ↾ 𝐶 ) ‘ 𝑦 ) ) ) ) | |
| 32 | 15 30 31 | sylanbrc | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 ↾ 𝐶 ) Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) |