This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fz1iso . (Contributed by Mario Carneiro, 2-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fz1iso.1 | |- G = ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) |
|
| fz1iso.2 | |- B = ( NN i^i ( `' < " { ( ( # ` A ) + 1 ) } ) ) |
||
| fz1iso.3 | |- C = ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) |
||
| fz1iso.4 | |- O = OrdIso ( R , A ) |
||
| Assertion | fz1isolem | |- ( ( R Or A /\ A e. Fin ) -> E. f f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1iso.1 | |- G = ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) |
|
| 2 | fz1iso.2 | |- B = ( NN i^i ( `' < " { ( ( # ` A ) + 1 ) } ) ) |
|
| 3 | fz1iso.3 | |- C = ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) |
|
| 4 | fz1iso.4 | |- O = OrdIso ( R , A ) |
|
| 5 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 6 | 5 | adantl | |- ( ( R Or A /\ A e. Fin ) -> ( # ` A ) e. NN0 ) |
| 7 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 8 | 1z | |- 1 e. ZZ |
|
| 9 | 8 1 | om2uzisoi | |- G Isom _E , < ( _om , ( ZZ>= ` 1 ) ) |
| 10 | isoeq5 | |- ( NN = ( ZZ>= ` 1 ) -> ( G Isom _E , < ( _om , NN ) <-> G Isom _E , < ( _om , ( ZZ>= ` 1 ) ) ) ) |
|
| 11 | 9 10 | mpbiri | |- ( NN = ( ZZ>= ` 1 ) -> G Isom _E , < ( _om , NN ) ) |
| 12 | 7 11 | ax-mp | |- G Isom _E , < ( _om , NN ) |
| 13 | isocnv | |- ( G Isom _E , < ( _om , NN ) -> `' G Isom < , _E ( NN , _om ) ) |
|
| 14 | 12 13 | ax-mp | |- `' G Isom < , _E ( NN , _om ) |
| 15 | nn0p1nn | |- ( ( # ` A ) e. NN0 -> ( ( # ` A ) + 1 ) e. NN ) |
|
| 16 | fvex | |- ( `' G ` ( ( # ` A ) + 1 ) ) e. _V |
|
| 17 | 16 | epini | |- ( `' _E " { ( `' G ` ( ( # ` A ) + 1 ) ) } ) = ( `' G ` ( ( # ` A ) + 1 ) ) |
| 18 | 17 | ineq2i | |- ( _om i^i ( `' _E " { ( `' G ` ( ( # ` A ) + 1 ) ) } ) ) = ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) |
| 19 | 3 18 | eqtr4i | |- C = ( _om i^i ( `' _E " { ( `' G ` ( ( # ` A ) + 1 ) ) } ) ) |
| 20 | 2 19 | isoini2 | |- ( ( `' G Isom < , _E ( NN , _om ) /\ ( ( # ` A ) + 1 ) e. NN ) -> ( `' G |` B ) Isom < , _E ( B , C ) ) |
| 21 | 14 15 20 | sylancr | |- ( ( # ` A ) e. NN0 -> ( `' G |` B ) Isom < , _E ( B , C ) ) |
| 22 | 6 21 | syl | |- ( ( R Or A /\ A e. Fin ) -> ( `' G |` B ) Isom < , _E ( B , C ) ) |
| 23 | nnz | |- ( f e. NN -> f e. ZZ ) |
|
| 24 | 6 | nn0zd | |- ( ( R Or A /\ A e. Fin ) -> ( # ` A ) e. ZZ ) |
| 25 | eluz | |- ( ( f e. ZZ /\ ( # ` A ) e. ZZ ) -> ( ( # ` A ) e. ( ZZ>= ` f ) <-> f <_ ( # ` A ) ) ) |
|
| 26 | 23 24 25 | syl2anr | |- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( ( # ` A ) e. ( ZZ>= ` f ) <-> f <_ ( # ` A ) ) ) |
| 27 | zleltp1 | |- ( ( f e. ZZ /\ ( # ` A ) e. ZZ ) -> ( f <_ ( # ` A ) <-> f < ( ( # ` A ) + 1 ) ) ) |
|
| 28 | 23 24 27 | syl2anr | |- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( f <_ ( # ` A ) <-> f < ( ( # ` A ) + 1 ) ) ) |
| 29 | ovex | |- ( ( # ` A ) + 1 ) e. _V |
|
| 30 | vex | |- f e. _V |
|
| 31 | 30 | eliniseg | |- ( ( ( # ` A ) + 1 ) e. _V -> ( f e. ( `' < " { ( ( # ` A ) + 1 ) } ) <-> f < ( ( # ` A ) + 1 ) ) ) |
| 32 | 29 31 | ax-mp | |- ( f e. ( `' < " { ( ( # ` A ) + 1 ) } ) <-> f < ( ( # ` A ) + 1 ) ) |
| 33 | 28 32 | bitr4di | |- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( f <_ ( # ` A ) <-> f e. ( `' < " { ( ( # ` A ) + 1 ) } ) ) ) |
| 34 | 26 33 | bitr2d | |- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( f e. ( `' < " { ( ( # ` A ) + 1 ) } ) <-> ( # ` A ) e. ( ZZ>= ` f ) ) ) |
| 35 | 34 | pm5.32da | |- ( ( R Or A /\ A e. Fin ) -> ( ( f e. NN /\ f e. ( `' < " { ( ( # ` A ) + 1 ) } ) ) <-> ( f e. NN /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) ) |
| 36 | 2 | elin2 | |- ( f e. B <-> ( f e. NN /\ f e. ( `' < " { ( ( # ` A ) + 1 ) } ) ) ) |
| 37 | elfzuzb | |- ( f e. ( 1 ... ( # ` A ) ) <-> ( f e. ( ZZ>= ` 1 ) /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) |
|
| 38 | elnnuz | |- ( f e. NN <-> f e. ( ZZ>= ` 1 ) ) |
|
| 39 | 38 | anbi1i | |- ( ( f e. NN /\ ( # ` A ) e. ( ZZ>= ` f ) ) <-> ( f e. ( ZZ>= ` 1 ) /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) |
| 40 | 37 39 | bitr4i | |- ( f e. ( 1 ... ( # ` A ) ) <-> ( f e. NN /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) |
| 41 | 35 36 40 | 3bitr4g | |- ( ( R Or A /\ A e. Fin ) -> ( f e. B <-> f e. ( 1 ... ( # ` A ) ) ) ) |
| 42 | 41 | eqrdv | |- ( ( R Or A /\ A e. Fin ) -> B = ( 1 ... ( # ` A ) ) ) |
| 43 | isoeq4 | |- ( B = ( 1 ... ( # ` A ) ) -> ( ( `' G |` B ) Isom < , _E ( B , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) ) ) |
|
| 44 | 42 43 | syl | |- ( ( R Or A /\ A e. Fin ) -> ( ( `' G |` B ) Isom < , _E ( B , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) ) ) |
| 45 | 22 44 | mpbid | |- ( ( R Or A /\ A e. Fin ) -> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) ) |
| 46 | 4 | oion | |- ( A e. Fin -> dom O e. On ) |
| 47 | 46 | adantl | |- ( ( R Or A /\ A e. Fin ) -> dom O e. On ) |
| 48 | simpr | |- ( ( R Or A /\ A e. Fin ) -> A e. Fin ) |
|
| 49 | wofi | |- ( ( R Or A /\ A e. Fin ) -> R We A ) |
|
| 50 | 4 | oien | |- ( ( A e. Fin /\ R We A ) -> dom O ~~ A ) |
| 51 | 48 49 50 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> dom O ~~ A ) |
| 52 | enfii | |- ( ( A e. Fin /\ dom O ~~ A ) -> dom O e. Fin ) |
|
| 53 | 48 51 52 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> dom O e. Fin ) |
| 54 | 47 53 | elind | |- ( ( R Or A /\ A e. Fin ) -> dom O e. ( On i^i Fin ) ) |
| 55 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 56 | 54 55 | eleqtrrdi | |- ( ( R Or A /\ A e. Fin ) -> dom O e. _om ) |
| 57 | eqid | |- ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) = ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) |
|
| 58 | 0z | |- 0 e. ZZ |
|
| 59 | 1 57 8 58 | uzrdgxfr | |- ( dom O e. _om -> ( G ` dom O ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + ( 1 - 0 ) ) ) |
| 60 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 61 | 60 | oveq2i | |- ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + ( 1 - 0 ) ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) |
| 62 | 59 61 | eqtrdi | |- ( dom O e. _om -> ( G ` dom O ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) ) |
| 63 | 56 62 | syl | |- ( ( R Or A /\ A e. Fin ) -> ( G ` dom O ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) ) |
| 64 | 51 | ensymd | |- ( ( R Or A /\ A e. Fin ) -> A ~~ dom O ) |
| 65 | cardennn | |- ( ( A ~~ dom O /\ dom O e. _om ) -> ( card ` A ) = dom O ) |
|
| 66 | 64 56 65 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> ( card ` A ) = dom O ) |
| 67 | 66 | fveq2d | |- ( ( R Or A /\ A e. Fin ) -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) ) |
| 68 | 57 | hashgval | |- ( A e. Fin -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
| 69 | 68 | adantl | |- ( ( R Or A /\ A e. Fin ) -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
| 70 | 67 69 | eqtr3d | |- ( ( R Or A /\ A e. Fin ) -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) = ( # ` A ) ) |
| 71 | 70 | oveq1d | |- ( ( R Or A /\ A e. Fin ) -> ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) = ( ( # ` A ) + 1 ) ) |
| 72 | 63 71 | eqtrd | |- ( ( R Or A /\ A e. Fin ) -> ( G ` dom O ) = ( ( # ` A ) + 1 ) ) |
| 73 | 72 | fveq2d | |- ( ( R Or A /\ A e. Fin ) -> ( `' G ` ( G ` dom O ) ) = ( `' G ` ( ( # ` A ) + 1 ) ) ) |
| 74 | isof1o | |- ( G Isom _E , < ( _om , NN ) -> G : _om -1-1-onto-> NN ) |
|
| 75 | 12 74 | ax-mp | |- G : _om -1-1-onto-> NN |
| 76 | f1ocnvfv1 | |- ( ( G : _om -1-1-onto-> NN /\ dom O e. _om ) -> ( `' G ` ( G ` dom O ) ) = dom O ) |
|
| 77 | 75 56 76 | sylancr | |- ( ( R Or A /\ A e. Fin ) -> ( `' G ` ( G ` dom O ) ) = dom O ) |
| 78 | 73 77 | eqtr3d | |- ( ( R Or A /\ A e. Fin ) -> ( `' G ` ( ( # ` A ) + 1 ) ) = dom O ) |
| 79 | 78 | ineq2d | |- ( ( R Or A /\ A e. Fin ) -> ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) = ( _om i^i dom O ) ) |
| 80 | ordom | |- Ord _om |
|
| 81 | ordelss | |- ( ( Ord _om /\ dom O e. _om ) -> dom O C_ _om ) |
|
| 82 | 80 56 81 | sylancr | |- ( ( R Or A /\ A e. Fin ) -> dom O C_ _om ) |
| 83 | sseqin2 | |- ( dom O C_ _om <-> ( _om i^i dom O ) = dom O ) |
|
| 84 | 82 83 | sylib | |- ( ( R Or A /\ A e. Fin ) -> ( _om i^i dom O ) = dom O ) |
| 85 | 79 84 | eqtrd | |- ( ( R Or A /\ A e. Fin ) -> ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) = dom O ) |
| 86 | 3 85 | eqtrid | |- ( ( R Or A /\ A e. Fin ) -> C = dom O ) |
| 87 | isoeq5 | |- ( C = dom O -> ( ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) ) ) |
|
| 88 | 86 87 | syl | |- ( ( R Or A /\ A e. Fin ) -> ( ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) ) ) |
| 89 | 45 88 | mpbid | |- ( ( R Or A /\ A e. Fin ) -> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) ) |
| 90 | 4 | oiiso | |- ( ( A e. Fin /\ R We A ) -> O Isom _E , R ( dom O , A ) ) |
| 91 | 48 49 90 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> O Isom _E , R ( dom O , A ) ) |
| 92 | isotr | |- ( ( ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) /\ O Isom _E , R ( dom O , A ) ) -> ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 93 | 89 91 92 | syl2anc | |- ( ( R Or A /\ A e. Fin ) -> ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |
| 94 | isof1o | |- ( ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) -> ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 95 | f1of | |- ( ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) --> A ) |
|
| 96 | 93 94 95 | 3syl | |- ( ( R Or A /\ A e. Fin ) -> ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) --> A ) |
| 97 | fzfid | |- ( ( R Or A /\ A e. Fin ) -> ( 1 ... ( # ` A ) ) e. Fin ) |
|
| 98 | 96 97 | fexd | |- ( ( R Or A /\ A e. Fin ) -> ( O o. ( `' G |` B ) ) e. _V ) |
| 99 | isoeq1 | |- ( f = ( O o. ( `' G |` B ) ) -> ( f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) <-> ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) ) |
|
| 100 | 98 93 99 | spcedv | |- ( ( R Or A /\ A e. Fin ) -> E. f f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |