This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzrdgxfr.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) | |
| uzrdgxfr.2 | ⊢ 𝐻 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐵 ) ↾ ω ) | ||
| uzrdgxfr.3 | ⊢ 𝐴 ∈ ℤ | ||
| uzrdgxfr.4 | ⊢ 𝐵 ∈ ℤ | ||
| Assertion | uzrdgxfr | ⊢ ( 𝑁 ∈ ω → ( 𝐺 ‘ 𝑁 ) = ( ( 𝐻 ‘ 𝑁 ) + ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzrdgxfr.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) | |
| 2 | uzrdgxfr.2 | ⊢ 𝐻 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐵 ) ↾ ω ) | |
| 3 | uzrdgxfr.3 | ⊢ 𝐴 ∈ ℤ | |
| 4 | uzrdgxfr.4 | ⊢ 𝐵 ∈ ℤ | |
| 5 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ∅ ) ) | |
| 6 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ∅ ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑦 = ∅ → ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) = ( ( 𝐻 ‘ ∅ ) + ( 𝐴 − 𝐵 ) ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) ↔ ( 𝐺 ‘ ∅ ) = ( ( 𝐻 ‘ ∅ ) + ( 𝐴 − 𝐵 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑘 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑦 = 𝑘 → ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) = ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑦 = 𝑘 → ( ( 𝐺 ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) ↔ ( 𝐺 ‘ 𝑘 ) = ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑦 = suc 𝑘 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑘 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑦 = suc 𝑘 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ suc 𝑘 ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑦 = suc 𝑘 → ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) = ( ( 𝐻 ‘ suc 𝑘 ) + ( 𝐴 − 𝐵 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑦 = suc 𝑘 → ( ( 𝐺 ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) ↔ ( 𝐺 ‘ suc 𝑘 ) = ( ( 𝐻 ‘ suc 𝑘 ) + ( 𝐴 − 𝐵 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑁 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑁 ) ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) = ( ( 𝐻 ‘ 𝑁 ) + ( 𝐴 − 𝐵 ) ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝐺 ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑦 ) + ( 𝐴 − 𝐵 ) ) ↔ ( 𝐺 ‘ 𝑁 ) = ( ( 𝐻 ‘ 𝑁 ) + ( 𝐴 − 𝐵 ) ) ) ) |
| 21 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 22 | 4 21 | ax-mp | ⊢ 𝐵 ∈ ℂ |
| 23 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 24 | 3 23 | ax-mp | ⊢ 𝐴 ∈ ℂ |
| 25 | 22 24 | pncan3i | ⊢ ( 𝐵 + ( 𝐴 − 𝐵 ) ) = 𝐴 |
| 26 | 4 2 | om2uz0i | ⊢ ( 𝐻 ‘ ∅ ) = 𝐵 |
| 27 | 26 | oveq1i | ⊢ ( ( 𝐻 ‘ ∅ ) + ( 𝐴 − 𝐵 ) ) = ( 𝐵 + ( 𝐴 − 𝐵 ) ) |
| 28 | 3 1 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 𝐴 |
| 29 | 25 27 28 | 3eqtr4ri | ⊢ ( 𝐺 ‘ ∅ ) = ( ( 𝐻 ‘ ∅ ) + ( 𝐴 − 𝐵 ) ) |
| 30 | oveq1 | ⊢ ( ( 𝐺 ‘ 𝑘 ) = ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) → ( ( 𝐺 ‘ 𝑘 ) + 1 ) = ( ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) + 1 ) ) | |
| 31 | 3 1 | om2uzsuci | ⊢ ( 𝑘 ∈ ω → ( 𝐺 ‘ suc 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) + 1 ) ) |
| 32 | 4 2 | om2uzsuci | ⊢ ( 𝑘 ∈ ω → ( 𝐻 ‘ suc 𝑘 ) = ( ( 𝐻 ‘ 𝑘 ) + 1 ) ) |
| 33 | 32 | oveq1d | ⊢ ( 𝑘 ∈ ω → ( ( 𝐻 ‘ suc 𝑘 ) + ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐻 ‘ 𝑘 ) + 1 ) + ( 𝐴 − 𝐵 ) ) ) |
| 34 | 4 2 | om2uzuzi | ⊢ ( 𝑘 ∈ ω → ( 𝐻 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 35 | eluzelz | ⊢ ( ( 𝐻 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐻 ‘ 𝑘 ) ∈ ℤ ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑘 ∈ ω → ( 𝐻 ‘ 𝑘 ) ∈ ℤ ) |
| 37 | 36 | zcnd | ⊢ ( 𝑘 ∈ ω → ( 𝐻 ‘ 𝑘 ) ∈ ℂ ) |
| 38 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 39 | 24 22 | subcli | ⊢ ( 𝐴 − 𝐵 ) ∈ ℂ |
| 40 | add32 | ⊢ ( ( ( 𝐻 ‘ 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 − 𝐵 ) ∈ ℂ ) → ( ( ( 𝐻 ‘ 𝑘 ) + 1 ) + ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) + 1 ) ) | |
| 41 | 38 39 40 | mp3an23 | ⊢ ( ( 𝐻 ‘ 𝑘 ) ∈ ℂ → ( ( ( 𝐻 ‘ 𝑘 ) + 1 ) + ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) + 1 ) ) |
| 42 | 37 41 | syl | ⊢ ( 𝑘 ∈ ω → ( ( ( 𝐻 ‘ 𝑘 ) + 1 ) + ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) + 1 ) ) |
| 43 | 33 42 | eqtrd | ⊢ ( 𝑘 ∈ ω → ( ( 𝐻 ‘ suc 𝑘 ) + ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) + 1 ) ) |
| 44 | 31 43 | eqeq12d | ⊢ ( 𝑘 ∈ ω → ( ( 𝐺 ‘ suc 𝑘 ) = ( ( 𝐻 ‘ suc 𝑘 ) + ( 𝐴 − 𝐵 ) ) ↔ ( ( 𝐺 ‘ 𝑘 ) + 1 ) = ( ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) + 1 ) ) ) |
| 45 | 30 44 | imbitrrid | ⊢ ( 𝑘 ∈ ω → ( ( 𝐺 ‘ 𝑘 ) = ( ( 𝐻 ‘ 𝑘 ) + ( 𝐴 − 𝐵 ) ) → ( 𝐺 ‘ suc 𝑘 ) = ( ( 𝐻 ‘ suc 𝑘 ) + ( 𝐴 − 𝐵 ) ) ) ) |
| 46 | 8 12 16 20 29 45 | finds | ⊢ ( 𝑁 ∈ ω → ( 𝐺 ‘ 𝑁 ) = ( ( 𝐻 ‘ 𝑁 ) + ( 𝐴 − 𝐵 ) ) ) |