This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoeq5 | ⊢ ( 𝐵 = 𝐶 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3 | ⊢ ( 𝐵 = 𝐶 → ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐻 : 𝐴 –1-1-onto→ 𝐶 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝐵 = 𝐶 → ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ) |
| 3 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 4 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐵 = 𝐶 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ) ) |