This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019) (Proof shortened by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| frlmphl.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | ||
| frlmphl.j | ⊢ , = ( ·𝑖 ‘ 𝑌 ) | ||
| frlmphl.o | ⊢ 𝑂 = ( 0g ‘ 𝑌 ) | ||
| frlmphl.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| frlmphl.s | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | ||
| frlmphl.f | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | ||
| frlmphl.m | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) → 𝑔 = 𝑂 ) | ||
| frlmphl.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) | ||
| frlmphl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| Assertion | frlmphl | ⊢ ( 𝜑 → 𝑌 ∈ PreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmphl.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmphl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | frlmphl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | frlmphl.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | |
| 5 | frlmphl.j | ⊢ , = ( ·𝑖 ‘ 𝑌 ) | |
| 6 | frlmphl.o | ⊢ 𝑂 = ( 0g ‘ 𝑌 ) | |
| 7 | frlmphl.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 8 | frlmphl.s | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| 9 | frlmphl.f | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | |
| 10 | frlmphl.m | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) → 𝑔 = 𝑂 ) | |
| 11 | frlmphl.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) | |
| 12 | frlmphl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 13 | 4 | a1i | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑌 ) ) |
| 14 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) | |
| 15 | eqidd | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) ) | |
| 16 | 5 | a1i | ⊢ ( 𝜑 → , = ( ·𝑖 ‘ 𝑌 ) ) |
| 17 | 6 | a1i | ⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝑌 ) ) |
| 18 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
| 19 | 9 18 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
| 20 | 19 | simpld | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 21 | 1 | frlmsca | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 22 | 20 12 21 | syl2anc | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 23 | 2 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 24 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) | |
| 25 | 3 | a1i | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
| 26 | 8 | a1i | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝑅 ) ) |
| 27 | 7 | a1i | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
| 28 | 20 | drngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 29 | 1 | frlmlmod | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ LMod ) |
| 30 | 28 12 29 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
| 31 | 22 20 | eqeltrrd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ DivRing ) |
| 32 | eqid | ⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) | |
| 33 | 32 | islvec | ⊢ ( 𝑌 ∈ LVec ↔ ( 𝑌 ∈ LMod ∧ ( Scalar ‘ 𝑌 ) ∈ DivRing ) ) |
| 34 | 30 31 33 | sylanbrc | ⊢ ( 𝜑 → 𝑌 ∈ LVec ) |
| 35 | 9 | fldcrngd | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 36 | 2 8 35 11 | idsrngd | ⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |
| 37 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝐼 ∈ 𝑊 ) |
| 38 | 28 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
| 39 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 ∈ 𝑉 ) | |
| 40 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ 𝑉 ) | |
| 41 | 1 2 3 4 5 | frlmipval | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ) → ( 𝑔 , ℎ ) = ( 𝑅 Σg ( 𝑔 ∘f · ℎ ) ) ) |
| 42 | 37 38 39 40 41 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 , ℎ ) = ( 𝑅 Σg ( 𝑔 ∘f · ℎ ) ) ) |
| 43 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑔 ∈ 𝑉 ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 44 | 37 39 43 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 45 | elmapi | ⊢ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑔 : 𝐼 ⟶ 𝐵 ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
| 47 | 46 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑔 Fn 𝐼 ) |
| 48 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 49 | 37 40 48 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 50 | elmapi | ⊢ ( ℎ ∈ ( 𝐵 ↑m 𝐼 ) → ℎ : 𝐼 ⟶ 𝐵 ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 52 | 51 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ℎ Fn 𝐼 ) |
| 53 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 54 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 55 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) | |
| 56 | 47 52 37 37 53 54 55 | offval | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 ∘f · ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) |
| 57 | 56 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑔 ∘f · ℎ ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 58 | 42 57 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 , ℎ ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 59 | 28 | ringcmnd | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 60 | 59 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑅 ∈ CMnd ) |
| 61 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 62 | 46 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 63 | 51 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) ∈ 𝐵 ) |
| 64 | 2 3 61 62 63 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 65 | 64 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 66 | 1 2 3 4 5 6 7 8 9 10 11 12 | frlmphllem | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) finSupp 0 ) |
| 67 | 2 7 60 37 65 66 | gsumcl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ∈ 𝐵 ) |
| 68 | 58 67 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑔 , ℎ ) ∈ 𝐵 ) |
| 69 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 70 | 59 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑅 ∈ CMnd ) |
| 71 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝐼 ∈ 𝑊 ) |
| 72 | 28 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 74 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑘 ∈ 𝐵 ) | |
| 75 | 74 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑘 ∈ 𝐵 ) |
| 76 | simp31 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑔 ∈ 𝑉 ) | |
| 77 | 71 76 43 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 78 | 77 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
| 79 | 78 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 80 | simp33 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 ∈ 𝑉 ) | |
| 81 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) → 𝑖 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 82 | 71 80 81 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 83 | elmapi | ⊢ ( 𝑖 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑖 : 𝐼 ⟶ 𝐵 ) | |
| 84 | 82 83 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 : 𝐼 ⟶ 𝐵 ) |
| 85 | 84 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑖 ‘ 𝑥 ) ∈ 𝐵 ) |
| 86 | 2 3 73 79 85 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 87 | 2 3 73 75 86 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
| 88 | simp32 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ ∈ 𝑉 ) | |
| 89 | 71 88 48 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 90 | 89 50 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 91 | 90 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) ∈ 𝐵 ) |
| 92 | 2 3 73 91 85 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 93 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) | |
| 94 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) | |
| 95 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑦 ) ) | |
| 96 | 95 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) = ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) |
| 97 | 96 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) |
| 98 | 97 | oveq1i | ⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) = ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ∘f · 𝑖 ) |
| 99 | 2 3 73 75 79 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 100 | 99 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 101 | 100 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) Fn 𝐼 ) |
| 102 | 97 | fneq1i | ⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) Fn 𝐼 ↔ ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) Fn 𝐼 ) |
| 103 | 101 102 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) Fn 𝐼 ) |
| 104 | 84 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 Fn 𝐼 ) |
| 105 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ) | |
| 106 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 107 | 106 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 108 | 107 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) = ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) |
| 109 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 110 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ∈ V ) | |
| 111 | 105 108 109 110 | fvmptd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) |
| 112 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑖 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) | |
| 113 | 103 104 71 71 53 111 112 | offval | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ∘f · 𝑖 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 114 | 2 3 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑖 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 115 | 73 75 79 85 114 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 116 | 115 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 117 | 113 116 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑦 ) ) ) ∘f · 𝑖 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 118 | 98 117 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 119 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ∈ V ) | |
| 120 | 101 104 71 71 | offun | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → Fun ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ) |
| 121 | simp3 | ⊢ ( ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) → 𝑖 ∈ 𝑉 ) | |
| 122 | 12 121 | anim12i | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) ) |
| 123 | 122 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) ) |
| 124 | 1 7 4 | frlmbasfsupp | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑖 ∈ 𝑉 ) → 𝑖 finSupp 0 ) |
| 125 | 123 124 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑖 finSupp 0 ) |
| 126 | 2 7 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 127 | 72 126 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 0 ∈ 𝐵 ) |
| 128 | 2 3 7 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 · 0 ) = 0 ) |
| 129 | 72 128 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 · 0 ) = 0 ) |
| 130 | 71 127 100 84 129 | suppofss2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) supp 0 ) ⊆ ( 𝑖 supp 0 ) ) |
| 131 | fsuppsssupp | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ∈ V ∧ Fun ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) ) ∧ ( 𝑖 finSupp 0 ∧ ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) supp 0 ) ⊆ ( 𝑖 supp 0 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) finSupp 0 ) | |
| 132 | 119 120 125 130 131 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) ∘f · 𝑖 ) finSupp 0 ) |
| 133 | 118 132 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) finSupp 0 ) |
| 134 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝜑 ) | |
| 135 | eleq1w | ⊢ ( 𝑔 = ℎ → ( 𝑔 ∈ 𝑉 ↔ ℎ ∈ 𝑉 ) ) | |
| 136 | id | ⊢ ( 𝑔 = ℎ → 𝑔 = ℎ ) | |
| 137 | 136 136 | oveq12d | ⊢ ( 𝑔 = ℎ → ( 𝑔 , 𝑔 ) = ( ℎ , ℎ ) ) |
| 138 | 137 | eqeq1d | ⊢ ( 𝑔 = ℎ → ( ( 𝑔 , 𝑔 ) = 0 ↔ ( ℎ , ℎ ) = 0 ) ) |
| 139 | 135 138 | 3anbi23d | ⊢ ( 𝑔 = ℎ → ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) ↔ ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ ( ℎ , ℎ ) = 0 ) ) ) |
| 140 | eqeq1 | ⊢ ( 𝑔 = ℎ → ( 𝑔 = 𝑂 ↔ ℎ = 𝑂 ) ) | |
| 141 | 139 140 | imbi12d | ⊢ ( 𝑔 = ℎ → ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ( 𝑔 , 𝑔 ) = 0 ) → 𝑔 = 𝑂 ) ↔ ( ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ ( ℎ , ℎ ) = 0 ) → ℎ = 𝑂 ) ) ) |
| 142 | 141 10 | chvarvv | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ ( ℎ , ℎ ) = 0 ) → ℎ = 𝑂 ) |
| 143 | 1 2 3 4 5 6 7 8 9 142 11 12 | frlmphllem | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 144 | 134 88 80 143 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 145 | 2 7 69 70 71 87 92 93 94 133 144 | gsummptfsadd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 146 | 1 2 3 | frlmip | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ DivRing ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |
| 147 | 12 20 146 | syl2anc | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝑌 ) ) |
| 148 | 5 147 | eqtr4id | ⊢ ( 𝜑 → , = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) ) |
| 149 | fveq1 | ⊢ ( 𝑒 = 𝑔 → ( 𝑒 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 150 | 149 | oveq1d | ⊢ ( 𝑒 = 𝑔 → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 151 | 150 | mpteq2dv | ⊢ ( 𝑒 = 𝑔 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 152 | 151 | oveq2d | ⊢ ( 𝑒 = 𝑔 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) |
| 153 | fveq1 | ⊢ ( 𝑓 = ℎ → ( 𝑓 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) | |
| 154 | 153 | oveq2d | ⊢ ( 𝑓 = ℎ → ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) |
| 155 | 154 | mpteq2dv | ⊢ ( 𝑓 = ℎ → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) |
| 156 | 155 | oveq2d | ⊢ ( 𝑓 = ℎ → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 157 | 152 156 | cbvmpov | ⊢ ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) , ℎ ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 158 | 148 157 | eqtr4di | ⊢ ( 𝜑 → , = ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) |
| 159 | 158 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → , = ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) |
| 160 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ) | |
| 161 | 160 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑒 ‘ 𝑥 ) = ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) ) |
| 162 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → 𝑓 = 𝑖 ) | |
| 163 | 162 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) |
| 164 | 161 163 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 165 | 164 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 166 | 165 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∧ 𝑓 = 𝑖 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 167 | 30 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑌 ∈ LMod ) |
| 168 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 169 | 168 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 170 | 2 169 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 171 | 74 170 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 172 | eqid | ⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) | |
| 173 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) | |
| 174 | 4 32 172 173 | lmodvscl | ⊢ ( ( 𝑌 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑔 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ) |
| 175 | 167 171 76 174 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ) |
| 176 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 177 | 4 176 | lmodvacl | ⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ 𝑉 ) |
| 178 | 167 175 88 177 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ 𝑉 ) |
| 179 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 180 | 71 178 179 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 181 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ∈ V ) | |
| 182 | 159 166 180 82 181 | ovmpod | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 183 | 1 4 72 71 175 88 69 176 | frlmplusgval | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∘f ( +g ‘ 𝑅 ) ℎ ) ) |
| 184 | 1 2 4 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 185 | 71 175 184 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 186 | elmapi | ⊢ ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) : 𝐼 ⟶ 𝐵 ) | |
| 187 | ffn | ⊢ ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) : 𝐼 ⟶ 𝐵 → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) Fn 𝐼 ) | |
| 188 | 185 186 187 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) Fn 𝐼 ) |
| 189 | 90 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ℎ Fn 𝐼 ) |
| 190 | 71 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 191 | 76 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑔 ∈ 𝑉 ) |
| 192 | 1 4 2 190 75 191 109 172 3 | frlmvscaval | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ‘ 𝑥 ) = ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ) |
| 193 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) | |
| 194 | 188 189 71 71 53 192 193 | offval | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ∘f ( +g ‘ 𝑅 ) ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ) ) |
| 195 | 183 194 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ) ) |
| 196 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ∈ V ) | |
| 197 | 195 196 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) = ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) ) |
| 198 | 197 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 199 | 2 69 3 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ∈ 𝐵 ∧ ( ℎ ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑖 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 200 | 73 99 91 85 199 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ℎ ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 201 | 115 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 · ( 𝑔 ‘ 𝑥 ) ) · ( 𝑖 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 202 | 198 200 201 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) = ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 203 | 202 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 204 | 203 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 205 | 182 204 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 206 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → 𝑒 = 𝑔 ) | |
| 207 | 206 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑒 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 208 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → 𝑓 = 𝑖 ) | |
| 209 | 208 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) |
| 210 | 207 209 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 211 | 210 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 212 | 211 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = 𝑔 ∧ 𝑓 = 𝑖 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 213 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ∈ V ) | |
| 214 | 159 212 77 82 213 | ovmpod | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑔 , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 215 | 214 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 · ( 𝑔 , 𝑖 ) ) = ( 𝑘 · ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 216 | 1 2 3 4 5 6 7 8 9 10 11 12 | frlmphllem | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 217 | 134 76 80 216 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 218 | 2 7 3 72 71 74 86 217 | gsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) = ( 𝑘 · ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 219 | 215 218 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑘 · ( 𝑔 , 𝑖 ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 220 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → 𝑒 = ℎ ) | |
| 221 | 220 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑒 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 222 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → 𝑓 = 𝑖 ) | |
| 223 | 222 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑖 ‘ 𝑥 ) ) |
| 224 | 221 223 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) |
| 225 | 224 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) |
| 226 | 225 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑖 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 227 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ∈ V ) | |
| 228 | 159 226 89 82 227 | ovmpod | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ℎ , 𝑖 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) |
| 229 | 219 228 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( 𝑘 · ( 𝑔 , 𝑖 ) ) ( +g ‘ 𝑅 ) ( ℎ , 𝑖 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑘 · ( ( 𝑔 ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑖 ‘ 𝑥 ) ) ) ) ) ) |
| 230 | 145 205 229 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ∧ ( 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ∧ 𝑖 ∈ 𝑉 ) ) → ( ( ( 𝑘 ( ·𝑠 ‘ 𝑌 ) 𝑔 ) ( +g ‘ 𝑌 ) ℎ ) , 𝑖 ) = ( ( 𝑘 · ( 𝑔 , 𝑖 ) ) ( +g ‘ 𝑅 ) ( ℎ , 𝑖 ) ) ) |
| 231 | 35 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → 𝑅 ∈ CRing ) |
| 232 | 231 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CRing ) |
| 233 | 2 3 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ ( ℎ ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) |
| 234 | 232 63 62 233 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) |
| 235 | 234 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) |
| 236 | 235 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 237 | 158 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → , = ( 𝑒 ∈ ( 𝐵 ↑m 𝐼 ) , 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) |
| 238 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → 𝑒 = ℎ ) | |
| 239 | 238 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑒 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 240 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → 𝑓 = 𝑔 ) | |
| 241 | 240 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 242 | 239 241 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 243 | 242 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 244 | 243 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) ∧ ( 𝑒 = ℎ ∧ 𝑓 = 𝑔 ) ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 245 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ∈ V ) | |
| 246 | 237 244 49 44 245 | ovmpod | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ℎ , 𝑔 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 247 | fveq2 | ⊢ ( 𝑥 = ( 𝑔 , ℎ ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ ( 𝑔 , ℎ ) ) ) | |
| 248 | id | ⊢ ( 𝑥 = ( 𝑔 , ℎ ) → 𝑥 = ( 𝑔 , ℎ ) ) | |
| 249 | 247 248 | eqeq12d | ⊢ ( 𝑥 = ( 𝑔 , ℎ ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( 𝑔 , ℎ ) ) ) |
| 250 | 11 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 251 | 250 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 252 | 249 251 68 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( 𝑔 , ℎ ) ) |
| 253 | 252 58 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑔 ‘ 𝑥 ) · ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 254 | 236 246 253 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉 ) → ( ∗ ‘ ( 𝑔 , ℎ ) ) = ( ℎ , 𝑔 ) ) |
| 255 | 13 14 15 16 17 22 23 24 25 26 27 34 36 68 230 10 254 | isphld | ⊢ ( 𝜑 → 𝑌 ∈ PreHil ) |