This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isphld.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | |
| isphld.a | ⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) | ||
| isphld.s | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | ||
| isphld.i | ⊢ ( 𝜑 → 𝐼 = ( ·𝑖 ‘ 𝑊 ) ) | ||
| isphld.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑊 ) ) | ||
| isphld.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | ||
| isphld.k | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝐹 ) ) | ||
| isphld.p | ⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) | ||
| isphld.t | ⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) | ||
| isphld.c | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) | ||
| isphld.o | ⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝐹 ) ) | ||
| isphld.l | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| isphld.r | ⊢ ( 𝜑 → 𝐹 ∈ *-Ring ) | ||
| isphld.cl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) | ||
| isphld.d | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐾 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) | ||
| isphld.ns | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑥 𝐼 𝑥 ) = 𝑂 ) → 𝑥 = 0 ) | ||
| isphld.cj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) | ||
| Assertion | isphld | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphld.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | |
| 2 | isphld.a | ⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) | |
| 3 | isphld.s | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | |
| 4 | isphld.i | ⊢ ( 𝜑 → 𝐼 = ( ·𝑖 ‘ 𝑊 ) ) | |
| 5 | isphld.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑊 ) ) | |
| 6 | isphld.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | |
| 7 | isphld.k | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝐹 ) ) | |
| 8 | isphld.p | ⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) | |
| 9 | isphld.t | ⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) | |
| 10 | isphld.c | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) | |
| 11 | isphld.o | ⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝐹 ) ) | |
| 12 | isphld.l | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 13 | isphld.r | ⊢ ( 𝜑 → 𝐹 ∈ *-Ring ) | |
| 14 | isphld.cl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) | |
| 15 | isphld.d | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐾 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) | |
| 16 | isphld.ns | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑥 𝐼 𝑥 ) = 𝑂 ) → 𝑥 = 0 ) | |
| 17 | isphld.cj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) | |
| 18 | 6 13 | eqeltrrd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
| 19 | oveq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | |
| 20 | 19 | cbvmptv | ⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 21 | 14 | 3expib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) ) |
| 22 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑊 ) ) ) |
| 23 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↔ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) |
| 24 | 22 23 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
| 25 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 26 | 6 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 27 | 7 26 | eqtrd | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 28 | 25 27 | eleq12d | ⊢ ( 𝜑 → ( ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 29 | 21 24 28 | 3imtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 30 | 29 | impl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 31 | 30 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 | oveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | |
| 33 | 32 | cbvmptv | ⊢ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 34 | 31 33 | fmptd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 35 | 34 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 36 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | |
| 37 | 36 | mpteq2dv | ⊢ ( 𝑦 = 𝑧 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 38 | 37 | feq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 39 | 38 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 40 | 35 39 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 41 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) | |
| 42 | 15 | 3exp | ⊢ ( 𝜑 → ( 𝑞 ∈ 𝐾 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) ) ) |
| 43 | 27 | eleq2d | ⊢ ( 𝜑 → ( 𝑞 ∈ 𝐾 ↔ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 44 | 3anrot | ⊢ ( ( 𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) | |
| 45 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑉 ↔ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) |
| 46 | 45 22 23 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
| 47 | 44 46 | bitr3id | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
| 48 | 3 | oveqd | ⊢ ( 𝜑 → ( 𝑞 · 𝑥 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
| 49 | eqidd | ⊢ ( 𝜑 → 𝑦 = 𝑦 ) | |
| 50 | 2 48 49 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑞 · 𝑥 ) + 𝑦 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) |
| 51 | eqidd | ⊢ ( 𝜑 → 𝑧 = 𝑧 ) | |
| 52 | 4 50 51 | oveq123d | ⊢ ( 𝜑 → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 53 | 6 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ 𝐹 ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 | 8 53 | eqtrd | ⊢ ( 𝜑 → ⨣ = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 55 | 6 | fveq2d | ⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 56 | 9 55 | eqtrd | ⊢ ( 𝜑 → × = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 57 | eqidd | ⊢ ( 𝜑 → 𝑞 = 𝑞 ) | |
| 58 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 59 | 56 57 58 | oveq123d | ⊢ ( 𝜑 → ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 60 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑦 𝐼 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 61 | 54 59 60 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 62 | 52 61 | eqeq12d | ⊢ ( 𝜑 → ( ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 63 | 47 62 | imbi12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) |
| 64 | 42 43 63 | 3imtr3d | ⊢ ( 𝜑 → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) |
| 65 | 64 | imp31 | ⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 66 | 65 | 3exp2 | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑧 ∈ ( Base ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) |
| 67 | 66 | impancom | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) |
| 68 | 67 | 3imp2 | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 69 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 70 | 12 69 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LMod ) |
| 72 | 71 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 73 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 74 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 75 | 73 74 | lss1 | ⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 76 | 72 75 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 77 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 78 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 79 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 80 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 81 | 77 78 79 80 74 | lsscl | ⊢ ( ( ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 82 | 76 81 | sylancom | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 83 | oveq1 | ⊢ ( 𝑤 = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | |
| 84 | eqid | ⊢ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | |
| 85 | ovex | ⊢ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ∈ V | |
| 86 | 83 84 85 | fvmpt3i | ⊢ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 87 | 82 86 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 88 | simpr2 | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) | |
| 89 | oveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | |
| 90 | 89 84 85 | fvmpt3i | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 91 | 88 90 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 92 | 91 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 93 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 94 | oveq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | |
| 95 | 94 84 85 | fvmpt3i | ⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 96 | 93 95 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 97 | 92 96 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 98 | 68 87 97 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 99 | 98 | ralrimivvva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 100 | 77 | lmodring | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 101 | rlmlmod | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) | |
| 102 | 70 100 101 | 3syl | ⊢ ( 𝜑 → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
| 103 | 102 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
| 104 | rlmbas | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 105 | fvex | ⊢ ( Scalar ‘ 𝑊 ) ∈ V | |
| 106 | rlmsca | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 107 | 105 106 | ax-mp | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 108 | rlmplusg | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 109 | rlmvsca | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 110 | 73 104 77 107 78 79 108 80 109 | islmhm2 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) |
| 111 | 71 103 110 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) |
| 112 | 40 41 99 111 | mpbir3and | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 113 | 112 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 114 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | |
| 115 | 114 | mpteq2dv | ⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 116 | 115 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 117 | 116 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 118 | 113 117 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 119 | 20 118 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 120 | 16 | 3exp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂 → 𝑥 = 0 ) ) ) |
| 121 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑥 𝐼 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 122 | 6 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 123 | 11 122 | eqtrd | ⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 124 | 121 123 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂 ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 125 | 5 | eqeq2d | ⊢ ( 𝜑 → ( 𝑥 = 0 ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 126 | 124 125 | imbi12d | ⊢ ( 𝜑 → ( ( ( 𝑥 𝐼 𝑥 ) = 𝑂 → 𝑥 = 0 ) ↔ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) ) |
| 127 | 120 22 126 | 3imtr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) ) |
| 128 | 127 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 129 | 17 | 3expib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) ) |
| 130 | 6 | fveq2d | ⊢ ( 𝜑 → ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 131 | 10 130 | eqtrd | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 132 | 131 25 | fveq12d | ⊢ ( 𝜑 → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 133 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑦 𝐼 𝑥 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 134 | 132 133 | eqeq12d | ⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 135 | 129 24 134 | 3imtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 136 | 135 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 137 | 136 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 138 | 119 128 137 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 139 | 138 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 140 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 141 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 142 | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) | |
| 143 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 144 | 73 77 140 141 142 143 | isphl | ⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ ( Scalar ‘ 𝑊 ) ∈ *-Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 145 | 12 18 139 144 | syl3anbrc | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |